Citation: Yun-Ming Wang, Bing-Tao Tang, Wei Ma, Shu-Fen Zhang, De-Feng Zhao. An unusual substitution reaction of an aromatic sulfonic group based on 3-carbonyl-4-phenolsulfonic acid[J]. Chinese Chemical Letters, ;2013, 24(07): 613-616. shu

An unusual substitution reaction of an aromatic sulfonic group based on 3-carbonyl-4-phenolsulfonic acid

  • Corresponding author: Bing-Tao Tang, 
  • Received Date: 22 January 2012
    Available Online: 28 March 2013

  • An unusual substitution reaction of an aromatic sulfonic group based on 3-carbonyl-4-phenolsulfonic acid was discovered in a diazo-coupling process. The reaction occurred under mild reaction conditions (pH 8.0-9.0, 0-5℃, solvent: water) within a short reaction time (1 h). A plausible substitution reaction mechanism by phenol-ketone resonance was proposed.
  • 加载中
    1. [1]

      [1] L.C. Kurz, C. Frieden, Comparison of the structures of enzymic and nonenzymic transition states. Reductive desulfonation of 4-X-2,6-dinitrobenzene sulfonates by reduced nicotinamide adenine dinucleotide, Biochemistry 16 (1977) 5207-5216.

    2. [2]

      [2] (a) S.D. Bhat, A. Manokaran, A.K. Sahu, et al., Novel self-supported natural and synthetic polymer membranes for air humidification, J. Appl. Polym. Sci. 113 (2009) 2605-2612;

    3. [3]

      (b) Y.A. Elabd, M.A. Hickner, Block copolymers for fuel cells, Macromolecules 44 (2011) 1-11;

    4. [4]

      (c) Z.L. Chai, C. Wang, H.J. Zhang, et al., Nafion-carbon nanocomposite membranes prepared using hydrothermal carbonization for proton-exchange-membrane fuel cells, Adv. Funct. Mater. 20 (2010) 4394-4399;

    5. [5]

      (d) N.W. Li, Z.M. Cui, S.B. Zhang, W. Xing, Synthesis and characterization of rigidrod sulfonated polyimides bearing sulfobenzoyl side groups as proton exchange membranes, J. Memb. Sci. 295 (2007) 148-158;

    6. [6]

      (e) E. Kim, P.F. Weck, N. Balakrishnan, C. Bae, Nanoscale building blocks for the development of novel proton exchange membrane fuel cells, J. Phys. Chem. B 112 (2008) 3283-3286.

    7. [7]

      [3] F. Feigl, Abspaltung primärer arylamine aus sulfonsäuren in wäßriger lösung, Angew. Chem. Int. Edit. 73 (1961), 113.

    8. [8]

      [4] (a) A.A. Nunez Magro, G.R. Eastham, D.J. Cole-Hamilton, Preparation of phenolic compounds by decarboxylation of hydroxybenzoic acids or desulfonation of hydroxybenzenesulfonic acid, catalysed by electron rich palladium complexes, Dalton Trans. 24 (2009) 4683-4688;

    9. [9]

      (b) C. Muralikrishna, V. Renganathan, Peroxidase-catalyzed desulfonation of 3,5-dimethyl-4-hydroxy and 3,5-dimethyl-4-aminobenzenesulfonic acids, Biochem. Biophys. Res. Commun. 197 (1993) 798-804.

    10. [10]

      [5] Y. Izawa, N. Suzuki, A. Inoue, K. Ito, T. Ito, Photochemistry of sulfonyl compounds. 7. Photolysis of sodium arenesulfonates in aqueous solution: desulfonylation and desulfonation, J. Org. Chem. 44 (1979) 4581-4584.

    11. [11]

      [6] (a) R. Bruckner, Substitution reactions on aromatic compounds, in: Advanced Organic Chemistry, Academic Press, San Diego, 2002, pp. 169-219;

    12. [12]

      (b) V. Barbarossa, G. Vanga, M. Diamanti, M. Calí, G. Doddi, Chemically enhanced separation of H2SO4/HI mixtures from the bunsen reaction in the sulfur iodine thermochemical cycle, Ind. Eng. Chem. Res. 48 (2009) 9040-9044.

    13. [13]

      [7] (a) K. Elbs, Ueber nitrohydrochinon, J. Prakt. Chem. 48 (1893) 179-185;

    14. [14]

      (b) S.M. Sethna, The elbs persulfate oxidation, Chem. Rev. 49 (1951) 91-101.

    15. [15]

      [8] F. Bender, Ueber die aus α-naphtol entstehenden sulfosäuren, Ber. Dtsch. Chem. Ges. 22 (1889) 993-1000.

    16. [16]

      [9] (a) D.R. Patel, K.C. Patel, Synthesis, antimicrobial activity and application of some novel quinazolinone based monoazo reactive dyes on various fibres, Dyes Pigments 90 (2011) 1-10;

    17. [17]

      (b) M.R. Yazdanbakhsh, M. Abbasnia, M. Sheykhan, L. Ma'mani, Characterization and application of new azo dyes derived from uracil for polyester fibre dyeing, J. Mol. Struct. 977 (2010) 266-273;

    18. [18]

      (c) Y.A. Son, Y.M. Park, C.J. Shin, S.H. Kim, Self-assembly multi-layer of diazonium resin and its coupling reaction with J-acid and H-acid, Dyes Pigments 72 (2007) 345-348;

    19. [19]

      (d) Y.D. Kim, J.H. Cho, C.R. Park, et al., Synthesis, application and investigation of structure-thermal stability relationships of thermally stable water-soluble azo naphthalene dyes for LCD red color filters, Dyes Pigments 89 (2011) 1-8;

    20. [20]

      (e) E. Jeong, H.S. Freeman, L.D. Claxton, Synthesis and characterization of selected 4,4'-diaminoalkoxyazobenzenes, Dyes Pigments 87 (2010) 100-108;

    21. [21]

      (f) C. Jermini, S. Koller, H. Zollinger, Allgemeine basenkatalyse der azokupplung von o-diazophenolen. 19. Mitteilung zur kenntnis der azokupplungsreaktion, Helv. Chim. Acta 53 (1970) 72-78;

    22. [22]

      (g) K.A. Kornev, A.Y. Zheltov, Effect of substituent in diazotized orthanilic acid on the azo coupling with 7-acetylamino-4-hydroxynaphthalene-2-sulfonic acid in citrate-phosphate buffers, Russ. J. Gen. Chem. 73 (2003) 1095-1099.

    23. [23]

      [10] (a) G. Iftime, F.L. Labarthet, A. Natansohn, P. Rochon, K. Murti, Main chaincontaining azo-tetraphenyldiaminobiphenyl photorefractive polymers, Chem. Mater. 14 (2001) 168-174;

    24. [24]

      (b) S.U. Pedersen, M. Kongsfelt, J. Vinther, et al., Combining aryltriazenes and electrogenerated acids to create well-defined aryl-tethered films and patterns on surfaces, J. Am. Chem. Soc. 133 (2001) 3788-3791.

  • 加载中
    1. [1]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    2. [2]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    3. [3]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    4. [4]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    5. [5]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    6. [6]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

    7. [7]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    8. [8]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    9. [9]

      Jiao WangShuang-Yan LangZhen-Zhen ShenGui-Xian LiuJian-Xin TianYuan LiRui-Zhi LiuRui WenIn situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815

    10. [10]

      Hongzhi Zhang Hong Li Asif Ali Haider Junpeng Li Zhi Xie Hongming Jiang Conglin Liu Rui Wang Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509

    11. [11]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    12. [12]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    13. [13]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    14. [14]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    15. [15]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    16. [16]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    17. [17]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

    18. [18]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    19. [19]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    20. [20]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

Metrics
  • PDF Downloads(0)
  • Abstract views(680)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return