Citation: Naser Foroughifar, Sattar Ebrahimi. One-pot synthesis of 1, 3-thiazolidin-4-one using Bi(SCH2COOH)3 as catalyst[J]. Chinese Chemical Letters, ;2013, 24(05): 389-391. shu

One-pot synthesis of 1, 3-thiazolidin-4-one using Bi(SCH2COOH)3 as catalyst

  • Corresponding author: Naser Foroughifar,  Sattar Ebrahimi, 
  • Received Date: 17 December 2012
    Available Online: 5 March 2013

  • A catalytic multi-component reaction involving aromatic amine, aromatic aldehydes, mercapto acid as substrates and Bi(SCH2COOH)3 as catalyst under solvent free conditions, afforded thiazolidin-4-one in good yields. The efficiency of the catalyst was proved with a variety of substrates, ranging from electrondeficient to electron-rich aldehydes.
  • 加载中
    1. [1]

      [1] S. Samai, G.C. Nandi, R. Kumar, M.S. Singh, Multicomponent one-pot solvent-free synthesis of functionalized unsymmetrical dihydro-1H-indeno[1,2-b]pyridines, Tetrahedron Lett. 50 (2009) 7096-7098.

    2. [2]

      [2] Y.X. Li, X. Zhai, W.K. Liao, et al., Design, synthesis and biological evaluation of new rhodacyanine analogues as potential antitumor agents, Chin. Chem. Lett. 23 (2012) 415-418.

    3. [3]

      [3] D. Bhambi, V.K. Salvi, J.L. Jat, S. Ojha, G.L. Talesara, Synthesis and antimicrobial activity of some new indole containing isoxazolines and phthalimidoxy derivatives of thiazolidinone and thiohydantoin, J. Sulfur Chem. 28 (2007) 155-163.

    4. [4]

      [4] X. Zhang, X. Li, D. Li, et al., Ionic liquid mediated and promoted eco-friendly preparation of thiazolidinone and pyrimidine nucleoside-thiazolidinone hybrids and their antiparasitic activities, Bioorg. Med. Chem. Lett. 19 (2009) 6280-6283.

    5. [5]

      [5] A. Mobinikhaledi, N. Foroughifar, M. Kalhor, et al., Synthesis and antifungal activity of novel 2-benzimidazolylimino-5-arylidene-4-thiazolidinones J, Heterocycl. Chem. 47 (2010) 77-80.

    6. [6]

      [6] X. Jin, C.J. Zheng, M.X. Song, et al., Synthesis and antimicrobial evaluation of lphenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone, Eur. Med. Chem. 56 (2012) 203-209.

    7. [7]

      [7] X.J. Sun, W.L. Dong, W.G. Zhao, Z.M. Li, Synthesis, crystal structure and biological activities of 2-substituted-3-aryl-4-thiazolidinone(thiazolidinethione) derivatives, Chin. J. Org. Chem. 27 (2007) 1374-1380.

    8. [8]

      [8] B. Chandrasekhar, b-Mercaptoalkanoic carboxylic esters: versatile synthons in heterocyclic chemistry, J. Sulfur Chem. 29 (2008) 187-240.

    9. [9]

      [9] D. Gautam, P. Gautam, R.P. Chaudhary, N-methylpyridinium tosylate catalyzed green and efficient synthesis of some novel 2,4-disubstituted thiazoles and 4-thiazolidinones, Chin. Chem. Lett. 23 (2012) 1221-1224.

    10. [10]

      [10] S.G. Patil, R.R. Bagul, M.S. Swami, et al., Synthesis of 5-benzylidene-3-(3-fluoro-4-yl-morpholin-4-yl-phenylimino)thiazolidin-4-one derivatives catalyzed by[BmIm]OH and their anti-microbial activity, Chin. Chem. Lett. 22 (2011) 883-886.

    11. [11]

      [11] V. Gududuru, V. Nguyen, J.T. Dalton, D.D. Miller, Efficient microwave enhanced synthesis of 4-thiazolidinones, Synlett (2004) 2357-2358.

    12. [12]

      [12] U.R. Pratap, D.V. Jawale, M.R. Bhosle, R.A. Mane, Saccharomyces cerevisiae catalyzed one-pot three component synthesis of 2,3-diaryl-4-thiazolidinones, Tetrahedron Lett. 52 (2011) 1689-1691.

    13. [13]

      [13] A. Bolognese, G. Correale, M. Manfra, et al., Thiazolidin-4-one formation. Mechanistic and synthetic aspects of the reaction of imines and mercaptoacetic acid under microwave and conventional heating, Org. Biomol. Chem. 2 (2004) 2809-2813.

  • 加载中
    1. [1]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    2. [2]

      Yixin SunKeke YuXiuchun GuoLanlan ZongZhonggui HeXiaohui Pu . Three-in-one reduction and acid-ignited micelles amplify antitumor efficacy via precise synergistic delivery of paclitaxel and naringenin. Chinese Chemical Letters, 2025, 36(6): 110393-. doi: 10.1016/j.cclet.2024.110393

    3. [3]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    4. [4]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    5. [5]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    6. [6]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    7. [7]

      Xiying WuAnze LiuYuzhong YanYing LuHuan Wang . Folic acid ameliorates the immunogenicity of PEGylated liposomes. Chinese Chemical Letters, 2025, 36(6): 110285-. doi: 10.1016/j.cclet.2024.110285

    8. [8]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    9. [9]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    10. [10]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    11. [11]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    12. [12]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    13. [13]

      Li FuZiye SuShuyang WuYanfen ChengChuan HuJinming Zhang . Redox-responsive hyaluronic acid-celastrol prodrug micelles with glycyrrhetinic acid co-delivery for tumor combination therapy. Chinese Chemical Letters, 2025, 36(5): 110227-. doi: 10.1016/j.cclet.2024.110227

    14. [14]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    15. [15]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    16. [16]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    17. [17]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    18. [18]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    19. [19]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

    20. [20]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

Metrics
  • PDF Downloads(0)
  • Abstract views(841)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return