Citation: Xi Wang, Yi-Jun Yang, Ying Ma, Jian-Nian Yao. Controlled synthesis of multi-shelled transition metal oxide hollow structure through one-pot solution route[J]. Chinese Chemical Letters, ;2013, 24(01): 1-6. shu

Controlled synthesis of multi-shelled transition metal oxide hollow structure through one-pot solution route

  • Corresponding author: Ying Ma,  Jian-Nian Yao, 
  • Received Date: 22 November 2012
    Available Online: 24 December 2012

  • As one type of promising candidates for environmental and energy-related systems,multi-shelled transition metal oxide hollow structures(MS-TMOHSs)have drawn great scientific and technical interest in the past few years.This article highlights recent advances in one-pot solution synthesis of MS-TMOHSs.We begin it with an overview of synthetic strategies that have been exploited to achieve these peculiar structures.We then focus on one-pot solution approaches in the following four sections:i)soft templates directed growth;ii)Ostwald ripening;iii)controlled etching;and iv)gas bubble assisted growth.After giving a brief discussion on the unique properties and applications of these multi-shelled hollow structures,we conclude this review with the general challenges and the potential future directions of this exciting area of research.
  • 加载中
    1. [1]

      [1] X.W.Lou,L.A.Archer,Z.Yang,Hollow micro-/nanostructures:synthesis and applications,Adv.Mater.20(2008)3987-4019.

    2. [2]

      [2] J.Liu,F.Liu,J.Wu,et al.,Recent developments in the chemical synthesis of inorganic porous capsules,J.Mater.Chem.19(2009)6073-6084.

    3. [3]

      [3] G.Réthoré,A.Pandit,Use of templates to fabricate nanoscale spherical structures for defined architectural control,Small 6(2010)488-498.

    4. [4]

      [4] J.Hu,M.Chen,X.Fang,et al.,Fabrication and application of inorganic hollow spheres,Chem.Soc.Rev.40(2011)5472-5491.

    5. [5]

      [5] J.Liu,D.Xue,Hollow nanostructured anode materials for Li-ion batteries,Nano-scale Res.Lett.5(2010)1525-1534.

    6. [6]

      [6] X.Wang,W.Tian,T.Zhai,et al.,Cobalt(Ⅱ,Ⅲ)oxide hollow structures:fabrication, properties and applications,J.Mater.Chem.22(2012)23310-23326.

    7. [7]

      [7] X.Lai,J.E.Halpert,D.Wang,Recent advances in micro-/nano-structured hollow spheres for energy applications:from simple to complex systems,Energy Environ. Sci.5(2012)5604-5618.

    8. [8]

      [8] Y.Zhao,L.Jiang,Hollow micro/nanomaterials with multilevel interior structures, Adv.Mater.21(2009)3621-3638.

    9. [9]

      [9] H.Zeng,Synthesis and self-assembly of complex hollow materials,J.Mater.Chem. 21(2011)7511-7526.

    10. [10]

      [10] M.Yang,J.Ma,C.L.Zhang,et al.,General synthetic route toward functional hollow spheres with double-shelled structures,Angew.Chem.Int.Ed.44(2005) 6727-6730.

    11. [11]

      [11] M.Yang,J.Ma,Z.Niu,et al.,Synthesis of spheres with complex structures using hollow latex cages as templates,Adv.Funct.Mater.15(2005)1523-1528.

    12. [12]

      [12] X.W.Lou,C.Yuan,L.A.Archer,Double-walled SnO2 nano-cocoons with movable magnetic cores,Adv.Mater.19(2007)3328-3332.

    13. [13]

      [13] X.W.Lou,C.Yuan,L.A.Archer,Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls:cavity size tuning and functionalization,Small 3 (2007)261-265.

    14. [14]

      [14] J.Qiu,F.Zhuge,X.Li,et al.,Coaxial multi-shelled TiO2 nanotube arrays for dye sensitized solar cells,J.Mater.Chem.22(2012)3549-3554.

    15. [15]

      [15] H.X.Yang,J.F.Qian,Z.X.Chen,et al.,Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrother-mal environment,J.Phys.Chem.C 111(2007)14067-14071.

    16. [16]

      [16] C.Z.Wu,X.D.Zhang,B.Ning,et al.,Shape evolution of new-phased lepidocrocite VOOH from single-shelled to double-shelled hollow nanospheres on the basis of programmed reaction-temperature strategy,Inorg.Chem.48(2009) 6044-6054.

    17. [17]

      [17] Y.Zeng,X.Wang,H.Wang,et al.,Multi-shelled titania hollow spheres fabricated by a hard template strategy:enhanced photocatalytic activity,Chem.Commun. 46(2010)4312-4314.

    18. [18]

      [18] J.Guan,F.Mou,Z.Sun,et al.,Preparation of hollow spheres with controllable interior structures by heterogeneous contraction,Chem.Commun.46(2010) 6605-6607.

    19. [19]

      [19] F.Z.Mou,J.G.Guan,W.D.Shi,et al.,Oriented contraction:a facile nonequilibrium heat-treatment approach for fabrication of maghemite fiber-in-tube and tube-in-tube nanostructures,Langmuir 26(2010)15580-15585.

    20. [20]

      [20] W.Cho,Y.H.Lee,H.J.Lee,et al.,Multi ball-in-ball hybrid metal oxides,Adv.Mater. 23(2011)1720-1723.

    21. [21]

      [21] X.Lai,J.Li,B.A.Korgel,et al.,General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres,Angew.Chem.Int.Ed.50(2011) 2738-2741.

    22. [22]

      [22] X.Wu,G.Q.Lu,L.Wang,Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application,Energy Envi-ron.Sci.4(2011)3565-3572.

    23. [23]

      [23] Y.L.Ding,X.B.Zhao,J.Xie,et al.,Double-shelled hollow microspheres of LiMn2O4 for high-performance lithium ion batteries,J.Mater.Chem.21 (2011)9475-9479.

    24. [24]

      [24] L.Wang,Z.Lou,T.Fei,et al.,Zinc oxide core-shell hollow microspheres with multi-shelled architecture for gas sensor applications,J.Mater.Chem.21(2011) 19331-19336.

    25. [25]

      [25] L.Zhou,D.Zhao,X.W.Lou,Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries,Adv.Mater.24(2012)745-748.

    26. [26]

      [26] Z.Dong,X.Lai,J.E.Halpert,et al.,Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency,Adv.Mater.24 (2012)1046-1049.

    27. [27]

      [27] G.Zhang,L.Yu,H.B.Wu,et al.,Formation of ZoMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries,Adv.Mater. 24(2012)4609-4613.

    28. [28]

      [28] H.L.Xu,W.Z.Wang,Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall,Angew.Chem.Int.Ed.46(2007)1489-1492.

    29. [29]

      [29] H.L.Xu,W.Z.Wang,L.Zhou,A growth model of single crystalline hollow spheres: oriented attachment of Cu2O nanoparticles to the single crystalline shell wall, Cryst.Growth Des.8(2008)3486-3489.

    30. [30]

      [30] W.Z.Wang,Y.Tu,P.C.Zhang,et al.,Surfactant-assisted synthesis of double-wall Cu2O hollow spheres,CrystEngComm1(2011)1838-1842.

    31. [31]

      [31] X.Wang,X.Wu,Y.Guo,et al.,Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres,Adv.Funct.Mater.20(2010) 1680-1686.

    32. [32]

      [32] X.Wang,Y.Zhong,T.Zhai,et al.,Multishelled Co3O4-Fe3O4 hollow spheres with even magnetic phase distribution:synthesis,magnetic properties and their application in water treatment,J.Mater.Chem.21(2011)17680-17687.

    33. [33]

      [33] W.Ostwald,On the assumed isomerism of red and yellow mercury oxide and the surface-tension of solid bodies,Z.Phys.Chem.34(1900)495-503.

    34. [34]

      [34] J.Liu,H.Xia,D.Xue,et al.,Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries,J.Am. Chem.Soc.131(2009)12086-12087.

    35. [35]

      [35] J.J.Ma,K.Qian,W.X.Huang,et al.,Facile one-step synthesis of double-shelled CeO2 hollow spheres and their optical and catalytic properties,Bull.Chem.Soc. Jpn.83(2010)1455-1461.

    36. [36]

      [36] L.Han,R.Liu,C.Li,et al.,Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid,J. Mater.Chem.22(2012)17079-17085.

    37. [37]

      [37] P.Hu,N.Han,X.Zhang,et al.,Fabrication of ZnO nanorod-assembled multishelled hollow spheres and enhanced performance in gas sensor,J.Mater.Chem.21 (2011)14277-14284.

    38. [38]

      [38] J.Wu,D.Xue,Hierarchical integration of ZnO nanocrystals into multishelled superstructures,Nanosci.Nanotechnol.Lett.3(2011)371-377.

    39. [39]

      [39] Y.Xiong,B.Wiley,J.Chen,et al.,Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties,Angew.Chem. Int.Ed.44(2005)7913-7917.

    40. [40]

      [40] D.Kim,J.Park,K.Ået al.,Synthesis of hollow iron nanoframes,J.Am.Chem.Soc. 129(2007)5812-5813.

    41. [41]

      [41] X.Wang,H.Fu,A.Peng,et al.,One-pot solution synthesis of cubic cobalt nanoskeletons,Adv.Mater.21(2009)1636-1640.

    42. [42]

      [42] C.J.Jia,L.D.Sun,Z.G.Yan,et al.,Iron oxide tube-in-tube nanostructures,J.Phys. Chem.C 111(2007)13022-13027.

    43. [43]

      [43] Z.C.Wu,M.Zhang,K.Yu,et al.,Self-assembled double-shelled ferrihydrite hollow spheres with a tunable aperture,Chem.Eur.J.14(2008)5346-5352.

    44. [44]

      [44] X.Wang,M.Liao,Y.Zhong,et al.,ZnO hollow spheres with double-yolk egg structure for high-performance photocatalysts and photodetectors,Adv.Mater. 24(2012)3421-3425.

    45. [45]

      [45] J.Qian,P.Liu,Y.Xiao,et al.,TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells,Adv.Mater.21(2009)3663-3667.

    46. [46]

      [46] J.H.Ju,K.S.Ryu,Synthesis and performance of CuO with C complex hollow structure as anode material for lithium secondary batteries,J.Electrochem. Soc.158(2011)A814-A817.

    47. [47]

      [47] H.Zhang,Q.Zhu,Y.Zhang,et al.,One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties,Adv.Funct.Mater.17(2007)2766-2771.

    48. [48]

      [48] J.Cao,Y.C.Zhu,L.Shi,et al.,Double-shelled Mn2O3 hollow spheres and their application in water treatment,Eur.J.Inorg.Chem.26(2010)1172-1176.

  • 加载中
    1. [1]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    2. [2]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    3. [3]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    4. [4]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    5. [5]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    6. [6]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    7. [7]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    10. [10]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    11. [11]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    12. [12]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    13. [13]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    14. [14]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    15. [15]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    16. [16]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    17. [17]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

    18. [18]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    19. [19]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    20. [20]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

Metrics
  • PDF Downloads(0)
  • Abstract views(702)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return