Citation:
Shu-Peng Zhang, Bin Liu, Cheng-Yin Li, Wei Chen, Zhi-Jian Yao, Dong-Ting Yao, Rong-Bing Yu, Hai-Ou Song. Enhanced dispersibility and thermal stability of β-cyclodextrin functionalized graphene[J]. Chinese Chemical Letters,
;2014, 25(2): 355-358.
-
A series of β-cyclodextrin (CDs) functionalized graphene nanohybrids have been successfully fabricated utilizing the classical covalent modification methods at different reaction temperatures. It is very interesting that although both CDs and graphene oxide (GO) could be easily decomposed, the effective combination of GO with CDs leads to significantly enhanced thermal stability of graphene derivatives (GO-CDs). Moreover, the introduction of CDs could dramatically improve the dispersibility promotion of our products in both polar/protic and nonpolar/aprotic solvents, which will contribute to the preparation of polymer nanocomposites and increase of their thermal stability. The improved thermal degradation temperatures can be obtained for polyvinyl alcohol after filling with as little as 1 wt.% of the hybrid. The obtained products could be potentially used in heat-retardant or thermal-control materials.
-
-
-
[1]
[1] T. Kuilla, S. Bhadra, D.H. Yao, et al., Recent advances in graphene based polymer composites, Prog. Polym. Sci. 35 (2010) 1350-1375.
-
[2]
[2] H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites, Macromolecules 43 (2010) 6515-6530.
-
[3]
[3] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39 (2010) 228-240.
-
[4]
[4] T. Kuila, S. Bose, C.E. Hong, et al., Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method, Carbon 49 (2011) 1033-1037.
-
[5]
[5] X. Zhao, Q.H. Zhang, D.J. Chen, et al., Enhanced mechanical properties of graphenebased poly(vinyl alcohol) composites, Macromolecules 43 (2010) 2357-2363.
-
[6]
[6] J.I. Paredes, S. Villar-Rodil, A. Marti´nez-Alonso, J.M.D. Tasco´ n, Graphene oxide dispersions in organic solvents, Langmuir 24 (2008) 10560-10564.
-
[7]
[7] W. Cai, R.D. Piner, F.J. Stadermann, et al., Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide, Science 321 (2008) 1815-1817.
-
[8]
[8] Y.S. Feng, J.J.Ma, X.Y. Lin, et al.,Covalent functionalizationof graphene oxideby 9-(4- aminophenyl)acridine and its derivatives, Chin. Chem. Lett. 23 (2012) 1411-1414.
-
[9]
[9] S.P. Zhang, P. Xiong, X.J. Yang, et al., Novel PEG functionalized graphene nanosheets: enhancement of dispersibility and thermal stability, Nanoscale 3 (2011) 2169-2174.
-
[10]
[10] S.P. Zhang, H.O. Song, Preparation of dispersible graphene oxide as a filler to increase the thermal stability of a flame retarding polymer, New Carbon Mater. 28 (2013) 61-65.
-
[11]
[11] S.P. Zhang, H.O. Song, Preparation of β-cyclodextrin functionalized graphene and enhancement of the thermal stability, Chem. J. Chin. Univ. 33 (2012) 1214-1219.
-
[12]
[12] S.P. Zhang, H.O. Song, Supramolecular graphene oxide-alkylamine hybrid materials: variation of dispersibility and improvement of thermal stability, New J. Chem. 36 (2012) 1733.
-
[13]
[13] S.P. Zhang, H.O. Song, Preparation and characterization of graphene oxide/bcyclodextrin supramolecular hybrid material, J. Inorg. Mater. 27 (2012) 596-602.
-
[14]
[14] S.P. Zhang, H.O. Song, Q.L. Qian, D.T. Yao, J.M. Han, Covalent modification strategies for enhancing of dispersibility and thermal stability of the functionalized graphene, Chemistry 76 (2013) 506-511.
-
[15]
[15] V. Georgakilas, M. Otyepka, A.B. Bourlinos, et al., Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications, Chem. Rev. 112 (2012) 6156-6214.
-
[16]
[16] J.H. Liu, G.S. Chen, M. Jiang, Supramolecular hybrid hydrogels from noncovalently functionalized graphene with block copolymers, Macromolecules 44 (2011) 7682-7691.
-
[17]
[17] Y. Yang, Y.M. Zhang, Y. Chen, et al., Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery, Chem. Eur. J. 18 (2012) 4208-4215.
-
[18]
[18] W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (1958) 1339.
-
[19]
[19] N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, et al., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater. 11 (1999) 771-778.
-
[20]
[20] S. Stankovich, D.A. Dikin, R.D. Piner, et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558-1565.
-
[21]
[21] S. Niyogi, E. Bekyarova, M.E. Itkis, et al., Solution properties of graphite and graphene, J. Am. Chem. Soc. 128 (2006) 7720-7721.
-
[22]
[22] C. Nethravathiand, M. Rajamathi, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon 46 (2008) 1994-1998.
-
[23]
[23] Y.W. Cao, J.C. Feng, P.Y. Wu, Alkyl-functionalized graphene nanosheets with improved lipophilicity, Carbon 48 (2010) 1683-1685.
-
[24]
[24] X.M. Yang, L. Li, S.M. Shang, X.M. Tao, Synthesis and characterization of layeraligned poly(vinyl alcohol)/graphene nanocomposites, Polymer 51 (2010) 3431- 3435.
-
[1]
-
-
-
[1]
Qinwei Lu , Jinjie Lu , Juying Lei , Xubiao Luo , Yanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017
-
[2]
Guizhi Zhu , Junrui Tan , Longfei Tan , Qiong Wu , Xiangling Ren , Changhui Fu , Zhihui Chen , Xianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669
-
[3]
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955
-
[4]
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
-
[5]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[6]
Manman Ou , Yunjian Zhu , Jiahao Liu , Zhaoxuan Liu , Jianjun Wang , Jun Sun , Chuanxiang Qin , Lixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510
-
[7]
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
-
[8]
Wenjia Wang , Xingyue He , Xiaojie Wang , Tiantian Zhao , Osamu Muraoka , Genzoh Tanabe , Weijia Xie , Tianjiao Zhou , Lei Xing , Qingri Jin , Hulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656
-
[9]
Jun Dong , Senyuan Tan , Sunbin Yang , Yalong Jiang , Ruxing Wang , Jian Ao , Zilun Chen , Chaohai Zhang , Qinyou An , Xiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010
-
[10]
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
-
[11]
Zhuwen Wei , Jiayan Chen , Congzhen Xie , Yang Chen , Shifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677
-
[12]
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
-
[13]
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
-
[14]
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
-
[15]
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
-
[16]
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
-
[17]
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
-
[18]
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
-
[19]
Zhiqing Ge , Zuxiong Pan , Shuo Yan , Baoying Zhang , Xiangyu Shen , Mozhen Wang , Xuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850
-
[20]
Shuai Liang , Wen-Jing Jiang , Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(796)
- HTML views(8)