Citation: MO Wen-long, XIAO Yan, MA Feng-yun, ZHONG Mei, LIU Jing-mei, Aisha·nulahong. Influence of calcination conditions on the performance of Ni-Al2O3 catalyst for CO methanation in slurry-bed reactor[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(1): 84-91. shu

Influence of calcination conditions on the performance of Ni-Al2O3 catalyst for CO methanation in slurry-bed reactor

  • Corresponding author: MA Feng-yun, ma_fy@126.com
  • Received Date: 25 August 2017
    Revised Date: 24 November 2017

    Fund Project: The project was supported by the National High Technology Research and Development Program of China (863 Program, 2015AA050502) and Natural Science Foundation of Xinjiang University (BS160221)the National High Technology Research and Development Program of China 863 Programthe National High Technology Research and Development Program of China 2015AA050502Natural Science Foundation of Xinjiang University BS160221

Figures(13)

  • Effects of calcination temperature and calcination time on the crystal structure, reduction characteristics, pore structure and CO methanation performance of Ni-Al2O3 catalyst were investigated by using a mechanical-chemical method to prepare Ni-Al2O3 catalyst. The catalysts were characterized by XRD, H2-TPR, BET, XPS and TPH. The results showed that the calcination temperature increased from 350℃ to 700℃, NiO was still well dispersed on the surface of the carrier, and the reduction peak temperature decreased to high temperature. The specific surface area of the cat-450 sample obtained by calcination at 450℃ was 350 m2/g. The results showed that with the calcination temperature increased from 350℃ to 700℃, CO conversion, CH4 selectivity and yield were increased first and then decreased, reaching the maximum at 450℃, with 97.8%, 88.2% and 86.2%, respectively. In addition, the calcination time has little effect on the reduction performance of the catalyst, and has small influence on the crystal structure of the carrier Al2O3. With the increase of calcination time, CO conversion decreased slightly and then increased with the better calcination time of 4 h.
  • 加载中
    1. [1]

      KOPYSCINSKI J, SCHILDHAUER T J, BIOLLAZ S M A. Production of synthetic natural gas from coal and dry biomass-a technology review from 1950 to 2009[J]. Fuel, 2010,89(8):1763-1783. doi: 10.1016/j.fuel.2010.01.027

    2. [2]

      LI An-xue, WANG Li-fu, ZUO Yu-bang. Research of some issues on the construction of coal-to-SNG plants[J]. Chem Ind Eng Process, 2013,32(12):2877-2881.  

    3. [3]

      HE Zhong, CUI Xiao-xi, FAN Hui, CHANG Yu, LI Zhong. Research of coal-to-synthetic natural gas technology and catalyst[J]. Chem Ind & Eng Pro, 2011,30(SI):388-392.  

    4. [4]

      TADA S, SHIMIZU T, KAMEYAMA H. Ni/CeO2catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures[J]. Int J Hydrogen Energy, 2012,37(7):5527-5531. doi: 10.1016/j.ijhydene.2011.12.122

    5. [5]

      YAN X L, LIU Y, ZHAO B R. Methanation over Ni/SiO2:Effect of the catalyst preparation methodologies[J]. Int J Hydrogen Energy, 2013,38(5):2283-2291. doi: 10.1016/j.ijhydene.2012.12.024

    6. [6]

      LU B, KAWAMOTO K. Preparation of the highly loaded and well-dispersed NiO/SBA-15 for methanation of producer gas[J]. Fuel, 2013,103(1):699-704.  

    7. [7]

      ZHANG Jia-ying, XIN Zhong, MENG Xin, TAO Miao. Activity and stability of nickel based MCM-41 methanation catalysts for production of synthetic natural gas[J]. CIESC J, 2014,65(1):160-168.  

    8. [8]

      ZHAO Hua-long, ZHAO Bin-ran, YAN Xiao-liang, LIU Yuan, WANG Yong, LIU Chang-jun. Ni/SiO2catalyst for CO methanation with support treated by dielectric barrier discharge plasma[J]. CIESC J, 2013,64(1):283-288.  

    9. [9]

      MO, MA, LIU, LIU, ZHONG, Aisha·nulahong. Influence of calcination temperature on the performance of NiO/γ-Al2O3 catalyst for CO2-CH4 reforming to produce syngas[J]. J Inorg Mater, 2016,31(3):234-240.  

    10. [10]

      HE Long, WANG Yong-gang, GONG Wei-bo, XU De-ping, YANG Fang-fang, ZHANG Hai-yong. Influence of calcination temperature on the performance of methanation in slurry bed reactor[J]. Coal Conver, 2012,35(4):72-76.  

    11. [11]

      YIN Hai-rong, WANG Ming-hua, ZHANG Chun-xiang. Influence of milling time on dielectric properties of barium titan ate[J]. Chin Cera, 2007,43(2):47-49.  

    12. [12]

      YOU Jin-fa. Preparation of heterogeneous growth of barium carbonate by mechanical activation precursor method[D]. Quanzhou: Huaqiao University, 2013.

    13. [13]

      LIU Ji, WANG Dong-xu, XIAO Xian-bin, CHEN Xu-jiao, QIN Wu, DONG Chang-qing. Effect of calcination temperature on Ni/γ-Al2O3 reduction and catalytic steam reforming of toluene[J]. J Fuel Chem Technol, 2014,42(10):1225-1232. doi: 10.3969/j.issn.0253-2409.2014.10.011 

    14. [14]

      OH Y S, ROH H S, JUN K W, BAEK Y S. A highly active catalyst, Ni/Ce-ZrO2/theta-Al2O3, for on-site H2 generation by steam methane reforming. pretreatment effect[J]. Int J Hydrogen Energy, 2003,28(12):1387-1392. doi: 10.1016/S0360-3199(03)00029-6

    15. [15]

      LI H T, XU Y L, GAO C G, ZHAO Y X. Structural and textural evolution of Ni/γ-A12O3 catalyst under hydrothermal conditions[J]. Catal Today, 2010,158(3/4):475-480.  

    16. [16]

      SHEN Wen-long. Research on Ni-based catalysts for methanation of coal syngas[D]. Xiangtan: Xiangtan University, 2013. 

    17. [17]

      HUANG Guo-bao, WANG Zhi-qing, LI Qing-feng, HUANG Jie-jie, FANG Yi-tian. Syngas methanation over nickel catalyst in liqiud-phase[J]. J Fuel Chem Technol, 2015,42(8):952-957.  

  • 加载中
    1. [1]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    5. [5]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    6. [6]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    7. [7]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    13. [13]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    15. [15]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    16. [16]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    17. [17]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    18. [18]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    19. [19]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(6)
  • Abstract views(1653)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return