Citation: HUANG Jin-bao, WU Long-qin, TONG Hong, LIU Chao, HE Chao, PAN Gui-ying. Theoretical study on thermal degradation mechanism of hemicellulose model compound[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(8): 911-920. shu

Theoretical study on thermal degradation mechanism of hemicellulose model compound

  • Corresponding author: HE Chao, hechao666777@163.com
  • Received Date: 24 March 2016
    Revised Date: 6 May 2016

Figures(6)

  • Six possible reaction pathways for the thermal degradation of 4-O-methyl-glucuronic acid as a hemicellulose model compound were proposed; the reactants, products, intermediates and trasistion states involved in these reaction pathways were structurally optimized and the related standard kinetic parameters were calculated. The results show that for the thermal degradation of the hemicellulose model compound, 4-O-methyl-glucuronic acid is first converted to catenulate intermediate through a ring-opening reaction with a intramolecular hydrogen transfer, the intermediate is then decomposed, with methanol, glycolaldehyde, 2-hydroxy-3-methoxy-butyl aldehyde acid, glyoxal, 2-hydroxy-butyl aldehyde acid and so on as the major products; the competitive degradation products are formic acid, CO2, CO, 4-hydroxy-3-vinylmethylketone, methoxyethene and so on. During the thermal degradation of hemicellulose, CO2 is likely formed through decarboxylation of unsaturated reactants or intermediates, whereas acetic acid is probably produced through the elimination of O-acetyl.
  • 加载中
    1. [1]

      WANG S, GUO X, WANG K, LUO Z. Influence of the interaction of components on the pyrolysis behavior of biomass[J]. J Anal Appl Pyrolysis, 2011,9:183-189.

    2. [2]

      HUANG J, LIU C, WU D, TONG H, REN L. Density functional theory studies on pyrolysis mechanism ofβ-O-4 type lignin dimer model compound[J]. J Anal Appl Pyrolysis, 2014,109:98-108. doi: 10.1016/j.jaap.2014.07.007

    3. [3]

      MOHAN D, PITTMAN C U, STEELE P H. Pyrolysis of wood/biomass for bio-oil:a critical review[J]. Energy Fuels, 2006,20:848-889. doi: 10.1021/ef0502397

    4. [4]

      HUANG Jin-bao, WU Shu-bin, CHENG Hao, LEI Ming, LIANG Jia-jin TONG Hong. Theoretical study of bond dissociation energies for lignin model compounds[J]. J Fuel Chem Technol, 2015,43(4):429-436. doi: 10.1016/S1872-5813(15)30011-6

    5. [5]

      MCKENDRY P. Energy production from biomass (part 1):Overview of biomass[J]. Bioresource Technol., 2002,83:37-46. doi: 10.1016/S0960-8524(01)00118-3

    6. [6]

      ZHANG Y, LIU C, XIE H. Mechanism studies onβ-D-glucopyranose pyrolysis by density functional theory methods[J]. J Anal Appl Pyrolysis, 2014,105:23-34. doi: 10.1016/j.jaap.2013.09.016

    7. [7]

      WANG Shu-rong, TAN Hong, LUO Zhong-yang, WANG Le, CEN Ke-fa. Experimental research on rapid pyrolysis of xylan[J]. J Zhejiang Univ (Eng Sci), 2006,40(3):419-423.  

    8. [8]

      XU You-ming.Wood Technology[M].Beijiing:China Forestry Press, 2006.

    9. [9]

      SHAFIZADEH F, MCGINNIS G D, PHILPOT C W. Thermal degradation of xylan and related model compounds[J]. Carbohydr Res, 1972,25:23-33. doi: 10.1016/S0008-6215(00)82742-1

    10. [10]

      PATWARDHAN P R, BROWN R C, B.SHANKS H. Product distribution from the fast pyrolysis of hemicellulose[J]. ChemSusChem, 2011,4(5):636-643. doi: 10.1002/cssc.v4.5

    11. [11]

      WANG S, RU B, LIN H, LUO Z. Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles[J]. Bioresour Technol, 2013,143:378-383. doi: 10.1016/j.biortech.2013.06.026

    12. [12]

      SHEN D K, GU S, V.BRIDGWATER A. Study on the pyrolytic behaviour of xylanbased hemicellulose using TG-FTIR and Py-GC-FTIR[J]. J Anal Appl Pyrolysis, 2010,87(2):199-206. doi: 10.1016/j.jaap.2009.12.001

    13. [13]

      PONDER G R, RICHARDS G N. Thermal synthesis and pyrolysis of a xylan[J]. Carbohydr Res, 1991,218:143-155. doi: 10.1016/0008-6215(91)84093-T

    14. [14]

      PENG Yun-yun, WU Shu-bin. Fast pyrolysis of hemicellulose in wheat straw[J]. J Fuel Chem Technol, 2011,39(1):21-25.  

    15. [15]

      PENG Y, WU S. Fast pyrolysis characteristics of sugarcane bagasse hemicellulose[J]. Cell Chem Technol, 2011,45(9/10):605-612.

    16. [16]

      LV G, WU S, LOU R. Characteristics of corn stalk hemicellulose in a tubular reactor[J]. Bioresour, 2010,5(4):2051-2062.

    17. [17]

      IVAN S, VARHEGY I G, ANTAL M J. Thermogravimetri/mass spectrometric characterization of the thermal decomposition of 4-O-methyl-D-glucurono-D-xylan[J]. J Appl Polym Sci, 1988,36(3):721-728. doi: 10.1002/app.1988.070360320

    18. [18]

      BLASI C D, LANZETTA M. Intrinsic kinetics of isothermal xylan degradation in inert atmosphere[J]. J Anal Appl Pyrolysis, 1997,40-41:287-303. doi: 10.1016/S0165-2370(97)00028-4

    19. [19]

      BEAUMONT O. Flash pyrolysis products from beech wood[J]. Wood Fiber Sci, 1985,17(2):28-39.  

    20. [20]

      HUANG J, LIU C, TONG H, LI W, WU D. Theoretical studies on pyrolysis mechanism of xylopyranose[J]. Comput Theor Chem, 2012,1001:44-50. doi: 10.1016/j.comptc.2012.10.015

    21. [21]

      HUANG Jin-bao, LIU Chao, TONG Hong, LI Wei-min, WU Dan. Theoretical studies on pyrolysis mechanism of O-acetyl-xylopyranose[J]. J Fuel Chem Technol, 2013,41(3):285-293. doi: 10.1016/S1872-5813(13)60019-5

    22. [22]

      ZHANG Y, LIU C, CHEN X. Unveiling the initial pyrolytic mechanisms of cellulose by DFT study[J]. J Anal Appl Pyrolysis, 2015,113:621-629. doi: 10.1016/j.jaap.2015.04.010

    23. [23]

      PARTHASARATHI R, ROMERO R A, REDONDO A, GNANAKARAN S. Theoretical study of the remarkably diverse linkages in lignin[J]. J Phys Chem Lett, 2011,2(20):2660-2666. doi: 10.1021/jz201201q

    24. [24]

      FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al.Gaussian 09, Revision D.01, Gaussian, Inc., Pittsburgh, PA[M].2009.

    25. [25]

      LIU C, HUANG J, HUANG X, LI H, ZHANG Z. Theoretical studies on formation mechanism of CO and CO2 in pyrolysis of cellulose[J]. Comput Theor Chem, 2011,964(1/3):207-212.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    11. [11]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    12. [12]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    13. [13]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    14. [14]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    15. [15]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    16. [16]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    17. [17]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    20. [20]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

Metrics
  • PDF Downloads(9)
  • Abstract views(2586)
  • HTML views(665)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return