Citation: Fangyuan Liu, Luyi Xu, Yang Xiu, Shengjie Wang. Non-Metallic Element Doped Titanium Dioxide[J]. Chemistry, ;2021, 84(2): 108-119, 148. shu

Non-Metallic Element Doped Titanium Dioxide

  • Corresponding author: Shengjie Wang, sjwang@upc.edu.cn
  • Received Date: 16 July 2020
    Accepted Date: 1 September 2020

Figures(9)

  • Titanium dioxide attracts great attentions for its important applications in many fields, especially in photoelectronic conversion and photocatalysis due to its excellent light stability, non-toxicity and easy preparation. However, its relatively poor charge transport property and wide bandgap are two main limitations for its extensive application in light-responsive materials. To meet such challenges, two strategies including ion doping and going nanoscale are used and demonstrated to be effective in regulating its band gap structure and charge transport behavior. Ion doping can be divided into two categories, metal doping and nonmetal doping, according to the properties of the impurity elements. Besides, compared with traditional titanium dioxide, nano-sized titanium dioxide possesses larger surface areas and special nanosized effect, resulting in higher chemical activity and heat resistance. In this review, we focused on the research progress of non-metallic element doped titanium dioxide. Emphases was put on the relationship within the doping element, the band gap structure, visible light responsibility and photocatalytic performance of the hybrid titanium dioxide. Additionally, the application of non-metallic element doped titanium dioxide was also involved.
  • 加载中
    1. [1]

      Hamad D, Dhib R, Mehrvar M. J. Polym. Environ., 2016, 24(1): 72~83.

    2. [2]

      Bustillo-Lecompte C F, Ghafoori S, Mehrvar M. J. Environ. Chem. Eng., 2016, 4(1): 719~732.

    3. [3]

      Nasirian M, Lin Y P, Bustillo-Lecompte C F, et al. Int. J. Environ. Sci. Technol., 2018, 15(9): 2009~2032.

    4. [4]

      Malakootian M, Mesdaghinia A, Rezaei S. Journal of Kerman University of Medical Sciences, 2017, 24(2): 147~158.

    5. [5]

      Wang S Q, Liu W B, Fu P, et al. Korean J. Chem. Eng., 2017, 34(5): 1584~1590.

    6. [6]

      Chen D, Caruso R A. Adv. Funct. Mater., 2013, 23(11): 1356~1394.

    7. [7]

      Wang H, Miyauchi M, Ishikawa Y, et al. J. Am. Chem. Soc., 2011, 133(47): 19102~19109.

    8. [8]

      Su J J, Li Z D, Zhang Y Q, et al. RSC Adv., 2016, 6(20): 16177~16182.

    9. [9]

      Ma Y, Wang X, Jia Y, et al. Chem. Rev., 2014, 114(19): 9987~10043.

    10. [10]

      Abdelhaleem A, Chu W. Chem. Eng. J., 2018, 338(15): 411~421.

    11. [11]

      Shehzad N, Tahir M, Johari K, et al. J. CO2 Util., 2018, 26: 98~122.

    12. [12]

      Sinhamahapatra A, Jeon J P, Yu J S. Energ. Environ. Sci., 2015, 8(12): 3539~3544.

    13. [13]

      Zheng X Z, Li D Z, Li X F, et al. Appl. Catal. B, 2015, 168~169: 408~415.

    14. [14]

      Khaki M R D, Shafeeyan M S, Raman A A A, et al. J. Environ. Manag., 2017, 198(2): 78~94.

    15. [15]

      Huang L W, Fu W Y, Zhang Z Y. Mater. Lett., 2017, 209(15): 585~588.

    16. [16]

      Behnajadym A, Eskandarloo H. Chem. Eng. J., 2013, 228(15): 1207~1213.

    17. [17]

      Todorova N, Giannakopoulou T, Romanos G, et al. Int. J. Photoenergy, 2008, 534038.

    18. [18]

      Mao C Y, Zuo F, Hou Y, et al. Angew. Chem. Int. Ed., 2014, 53(39): 10485~10489.

    19. [19]

      Shayegan Z, Lee C S, Haghighat F. Chem. Eng. J., 2018, 334(15): 2408~2439.

    20. [20]

      Yun J Y, Hwang S H, Jang J. ACS Appl. Mater. Inter., 2015, 7(3): 2055~2063.

    21. [21]

      Wei Z, Janczarek M, Endo M, et al. Appl. Catal. B, 2018, 237(5): 574~587.

    22. [22]

      Xie F Y, Li Y F, Dou J, et al. J. Power Sources, 2016, 336(30): 143~149.

    23. [23]

      Sengupta D, Das P, Mondal B, et al. Renew. Sustain. Energ. Rev., 2016, 60: 356~376.

    24. [24]

      Altin I, Sokmen M, Biykloglu Z. Desalin. Water Treat., 2016, 57(34): 16196~16207.

    25. [25]

      Shao G S. J. Phys. Chem. C, 2009, 113(16): 6800~6808.

    26. [26]

      Pap Z, Baia L, Mogyorósi K, et al. Catal. Commun., 2012, 17(5): 1~7.

    27. [27]

      Mulmi D D, Thapa D, Dahal B, et al. Int. J. Mater. Sci. Eng., 2016, 4(3): 172~178.

    28. [28]

      Zou M M, Xiong F Q, Ganeshraja A S, et al. Mater. Chem. Phys., 2017, 195(1): 259~267.

    29. [29]

      Primc D, Bartsch M, Barreca D, et al. Sustain. Energy Fuels, 2017, 1(1): 199~206.

    30. [30]

      Foura G, Chouchou N, Soualah A, et al. Catalysts, 2017, 7(11): 344.

    31. [31]

      Freyria F S, Compagnoni M, Ditaranto N, et al. Catalysts, 2017, 7(7): 213.

    32. [32]

      Shiba K, Kataoka T, Okuda M, et al. Royal Soc. Chem. Adv., 2016, 6(61): 55750~55754.

    33. [33]

      Husain S, Alkhtaby L A, Giorgetti E, et al. J. Luminescence, 2016, 172: 258~263.

    34. [34]

      Crisan M, Rǎileanu M, Drǎgan N, et al. Appl. Catal. A, 2015, 504(5): 130~142.

    35. [35]

      Santos R d S, Faria G A, Giles C, et al. ACS Appl. Mater. Inter., 2012, 4(10): 5555~5561.

    36. [36]

      Hinojosa-Reyes M, Camposeco-Olis R, Zanella R, et al. Chemosphere, 2017, 184: 992~1002.

    37. [37]

      Obregon S, Lee S W, Rodriguez-gonzalez Ⅴ. Mater. Lett., 2016, 173(15): 174~177.

    38. [38]

      Pham T D, Lee B K. Appl. Surf. Sci., 2014, 296(30): 15~23.

    39. [39]

      Zhi J T, Yu X Q, Bao J J, et al. Korean J. Chem. Eng., 2016, 33(6): 1823~1830.

    40. [40]

      Praveen P, Viruthagiri G, Mugundan S, et al. Spectrochim. Acta A, 2014, 120(24): 548~557.

    41. [41]

      Ning X W, Wang X X, Yu X F, et al. J. Alloys Compd., 2016, 658(15): 177~182.

    42. [42]

      Tshabalala Z P, Shingange K, Cummings F R, et al. J. Colloid Interf. Sci., 2017, 504(15): 371~386.

    43. [43]

      Salazar-villanueva M, Cruz-López A, Zaldívar-Cadena A A, et al. Mater. Sci. Semicon. Proc., 2017, 58: 8~14.

    44. [44]

      Wu M C, Chan S H, Jao M H, et al. Solar Energy Mater. Solar Cells, 2016, 157: 447~453.

    45. [45]

      Nair R G, Mazumdar S, Modak B, et al. J. Photochem. Photobiol. A, 2017, 345(1): 36~53.

    46. [46]

      Sui R H, Yong J L, Berlinguette C P. J. Mater. Chem., 2010, 20(3): 498~503.

    47. [47]

      Lübke M, Johnson L, Makwana N M, et al. J. Power Sources, 2015, 294(30): 94~102.

    48. [48]

      Li J L, Xu X T, Liu X J, et al. J. Alloys Compd., 2016, 679(15): 454~462.

    49. [49]

      Cai Q B, Zhang Y Q, Liang C, et al. Electrochim. Acta, 2018, 261, (20): 227~235.

    50. [50]

      Inturi S N R, Boningari T, Suidan M, et al. Appl. Catal. B, 2014, 144: 333~342.

    51. [51]

      Bhethanabotal V C, Russell D R, Kuhn J N. Appl. Catal. B, 2017, 201: 156~164.

    52. [52]

      Mazierski P, Mikolajczyk A, Bajorowicz B, et al. Appl. Catal. B, 2018, 233(5): 301~317.

    53. [53]

      Shwetharani R, Sakar M, Fernando C A N, et al. Catal. Sci. Technol., 2019, 9(1): 12~46.

    54. [54]

      Gao H T, Liu Y Y, Ding C H, et al. Int. J. Min. Metal. Mater., 2011, 18(5): 606~614.

    55. [55]

      Zhang Q Y, Li Y, Ackerman E A, et al. Appl. Catal. A, 2011, 400: 195~202.

    56. [56]

      Cho I S, Lee C H, Feng Y Z, Logar M, Rao P M, Cai L L, Kim D R, Sinclair R, Zheng X L. Nat. Commun., 2014, 5: 3204.

    57. [57]

      Lu N, Quan X, Li J Y, et al. J. Phys. Chem. C, 2007, 111(32): 11836~11842.

    58. [58]

      Simsek E B. Appl. Catal. B, 2017, 200: 309~322.

    59. [59]

      Wang Y, Jia K, Pan Q, et al. ACS Sustain. Chem. Eng., 2019, 7(1): 117~122.

    60. [60]

      Xiao Q, Ouyang L L. Chem. Eng. J., 2009, 148(2/3): 248~253.

    61. [61]

      Lee Y F, Chang K H, Hu C C, et al. J. Mater. Chem., 2010, 20: 5682~5688.

    62. [62]

      Sakthivel S, Kisch H. Angew. Chem. Int. Ed., 2003, 42(40): 4908~4911.

    63. [63]

      Warkhade S W, Warkhade G S, Zodape S P, et al. Mater. Sci. Semicon. Proc., 2017, 63(1): 18~24.

    64. [64]

      Zhou Q X, Xing A, Zhao D C, et al. Chemosphere, 2016, 165: 268~276.

    65. [65]

      Li W J, Liang R, Zhou N Y, et al. ACS Omega, 2020, 5(17): 10042~10051.

    66. [66]

      Huang M, Yu J H, Hu Q, et al. Appl. Surf. Sci., 2016, 389(15): 1084~1093.

    67. [67]

      Bao N, Wei Z T, Ma Z H, et al. J. Hazard. Mater., 2010, 174(1/2/3): 129~136.

    68. [68]

      Guo J F, Li S M, Duan L, et al. Integr. Ferroelectr., 2016, 168(1): 170~182.

    69. [69]

      Chen C L, Wei Y L, Yuan G Z, et al. Adv. Funct. Mater., 2017, 27(31): 1701575.

    70. [70]

      Du J, Li X Y, Li K, et al. J. Alloys Compd., 2016, 687(5): 893~897.

    71. [71]

      Ansari S A, Khan M M, Ansari M O, et al. New J. Chem., 2016, 40: 3000~3009.

    72. [72]

      Wang G M, Xiao X H, Li W Q, et al. Nano Lett., 2015, 15(7): 4692~4698.

    73. [73]

      Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001, 293(5528): 269~271.

    74. [74]

      Kong X L, Peng Z B, Jia P P, et al. ACS Appl. Nano Mater. 2020, 3(2): 1373~1381.

    75. [75]

      Kumar M P, Jagannathan R, Ravichandran S. Energy Fuels, 2020, 34(7): 9030~9036.

    76. [76]

      Jiang G M, Cao J W, Chen M, et al. Appl. Surf. Sci., 2018, 458: 77~85.

    77. [77]

      Gopal N O, Lo H H, Ke T F, et al. J. Phys. Chem. C, 2012, 116(30): 16191~16197.

    78. [78]

      Feng X Y, Wang P F, Hou J, et al. J. Hazard. Mater., 2018, 351: 196~205.

    79. [79]

      Feng H J, Zhang M H, Yu L E. J. Nanosci. Nanotechnol., 2013, 13(7): 4981~4989.

    80. [80]

      Hosseinzadeh G, Rasoulnezhad H, Ghasemian N, et al, J. Aust. Ceram. Soc., 2019, 55(2): 387~394.

    81. [81]

      Ni J F, Fu S D, Wu C, et al. Adv. Mater., 2016, 28(11): 2259~2265.

    82. [82]

      Zhang Y, He X R, Tang J H, et al. ACS Appl. Mater. Inter., 2019, 11(47): 44170~44178.

    83. [83]

      Wang W L, Wang Z F, Liu J J, et al. Sci. Rep., 2017, 7: 46610.

    84. [84]

      Gurkan Y Y, Cinar Z. Chem. Eng. J., 2013, 214(1): 34~44.

    85. [85]

      Xie W, Li R, Xu Q U. Sci. Rep., 2018, 8: 8752.

    86. [86]

      Zheng J W, Bhattcahrayya A, Wu P, et al. J. Phys. Chem., 2010, 114(15): 7063~7069.

    87. [87]

      Yu J C, Yu J G, Ho W K, et al. Chem. Mater., 2002, 14(9): 3808~3816.

    88. [88]

      Xu J J, Ao Y H, Fu D G, et al. J. Phys. Chem. Solids, 2008, 69(10): 2366~2370.

    89. [89]

      Zhang X Q, Wu Y P, Huang Y, et al. J. Alloys Compd., 2016, 681: 191.

    90. [90]

      Wu G S, Wang J P, Thomas D F, et al. Langmuir, 2008, 24(7): 3503~3509.

    91. [91]

      Wang X K, Wang C, Jiang W Q, et al. Chem. Eng. J., 2013, 189/190: 288~294.

    92. [92]

      Xu H, Zhang Z, Zhang L Z, Zet al. J. Solid State Chem., 2008, 181(9): 2516~2522.

    93. [93]

      Moitzheim S, Balder J E, Poodt P, et al. Chem. Mater., 2017, 29(23): 10007~10018.

    94. [94]

      Liu G, Sun C H, Yan X X, et al. J. Mater. Chem., 2009, 19: 2822~2829.

    95. [95]

      Chen D M, Jiang Z Y, Geng J Q, et al. Ind. Eng. Chem. Res., 2007, 46(9): 2271~2746.

    96. [96]

      Mani A D, Muthusamy S, Anadan S, et al. J. Exp. Nanosci., 2015, 10: 115~125.

    97. [97]

      Zhu H, Jing Y, Pal M, et al. Nanoscale, 2017, 9: 1539~1546.

    98. [98]

      El-Sheikh S M, Khedr T M, Hakki A, et al. Sep. Purif. Technol., 2017, 173: 258~268.

    99. [99]

      Luo H M, Takata T, Lee Y, et al. Chem. Mater., 2004, 16(5): 846~849.

    100. [100]

      Elbanna O, Zhang P, Fujitsuka M, et al. Appl. Catal. B, 2016, 192: 80~87.

    101. [101]

      Chen D M, Jiang Z Y, Geng J Q, et al. J. Nanopart. Res., 2009, 11(2): 303~313.

    102. [102]

      Mukherjee K, Acharya K, Biswas A, et al. ACS Appl. Nano Mater., 2020, 3(2): 2016~2025.

    103. [103]

      Siddiqa A, Masih D, Anjum D, et al. J. Environ. Sci., 2015, 37: 100~109.

    104. [104]

      Hamadanian M, Reisi-Vanani A, Behpour M, et al. Desalination, 2011, 381(17): 319~324.

    105. [105]

      Bessergenev V G, Mateus M C, Vasconcelos D A, et al. International J. Photoenergy, 2012, 767054.

    106. [106]

      Dong F, Guo S, Wang H Q, Let al. J. Phys. Chem. C, 2011, 115(27): 13285~13292.

    107. [107]

      Zhao Y X, Zhao X F, Run S, et al. Adv. Mater., 2019, 31(16): 1806482.

    108. [108]

      Dong F, Wang H, Wu Z. J. Phys. Chem. C, 2009, 113(38): 16717~16723.

    109. [109]

      Rami R D, Joyashish D, Vijayamohanan K, et al. Sci. Rep., 2015, (4): 4897.

  • 加载中
    1. [1]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    11. [11]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    12. [12]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    13. [13]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    14. [14]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    15. [15]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    16. [16]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    17. [17]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

Metrics
  • PDF Downloads(24)
  • Abstract views(1254)
  • HTML views(420)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return