Citation: Zhou Guoyong, Luo Yingchun, Li Heping. Progress in Polymer Nano Carriers for Improving Deep Tumor Penetration[J]. Chemistry, ;2017, 80(10): 891-899. shu

Progress in Polymer Nano Carriers for Improving Deep Tumor Penetration

Figures(9)

  • Over the last decades, remarkable progress has been made in the field of drug delivery in tumor.But, tumor therapy is still a tough nut to crack.However, in spite of significant advances to tumor targeting, an effective treatment strategy for malignant tumors still remains elusive.The research focus gradually shifted from the aggregation of carriers in the tumor to precise targeting and deep tumor penetration.How to overcome all obstacles to achieve its uniform distribution in the entire tumor tissue, to achieve an effective anti-tumor drug concentration are payed particular attention.In this paper, the mechanism of tumor tissue penetration were introduced, the effects of particles size, Zeta potential, particles shape, structure and chemical composition on tumor tissue penetration were discussed, and methods for assessing tumor tissue permeability were presented.The future research direction of this field was also prospected.
  • 加载中
    1. [1]

      W Chen, R Zheng, P D Baade et al. CA-Cancer J. Clin., 2016, 66:115~132. 

    2. [2]

      S Mura, J Nicolas, P Couvreur. Nat. Mater., 2013, 12:991~1003. 

    3. [3]

      C Shi, D Guo, K Xiao et al. Nat. Commun., 2015, 6:7449~7449. 

    4. [4]

      Q Hu, W Sun, Y Lu et al. Nano Lett., 2016, 16:1118~1126. 

    5. [5]

      A P Blum, J K Kammeyer, A M Rush et al. J. Am. Chem. Soc., 2015, 137(6):2140~2154. 

    6. [6]

      Q Sun, Z Kang, L Xue et al. J. Am. Chem. Soc., 2015, 137(18):6000~6010. 

    7. [7]

      K Cai, X He, Z Song et al. J. Am. Chem. Soc., 2015, 137(10):3458~3461. 

    8. [8]

      M W Tibbitt, J E Dahlman, R Langer. J. Am. Chem. Soc., 2016, 138(3):704~717. 

    9. [9]

      Y Liu, D Zhang, Z Qiao et al. Adv. Mater., 2015, 27(34):5034~5042 

    10. [10]

      L Zeng, Y Pan, Y Tian et al. Biomaterials, 2015, 57:93~106. 

    11. [11]

      N Bertrand, J Wu, X Xu et al. Adv. Drug Deliv. Rev., 2014, 66(24):2~25.

    12. [12]

      Y Cheng, R A Morshed, B Auffinger et al. Adv. Drug Deliv. Rev., 2014, 66(1):42~57.

    13. [13]

      Z Ge, S Liu. Chem. Soc. Rev., 2013, 42(17):7289~7325. 

    14. [14]

      T Wu, Y Dai. Cancer Lett., 2017, 387:61~68. 

    15. [15]

      S J Grainger, J V Serna, S Sunny et al. Mol. Pharm., 2010, 7(6):2006~2019. 

    16. [16]

      X Cun, J Chen, S Ruan et al. ACS Appl. Mater. Interf., 2015, 7:27458~27466. 

    17. [17]

      M Yu, I F Tannock. Cancer Cell, 2012, 21(6):327~329.

    18. [18]

      J Du, L A Lane, S Nie. J. Control. Rel., 2015, 219:205~214. 

    19. [19]

      A I Minchinton, I F Tannock. Nat. Rev. Cancer, 2006, 6(8):583~592. 

    20. [20]

      E Lim, T Kim, S Paik et al. Chem. Rev., 2015, 115(1):327~394. 

    21. [21]

      A J Leu, D A Berk, A Lymboussaki et al. Cancer Res., 2000, 60(16):4324~4327.

    22. [22]

      R K Jain, L L Munn, D Fukumura. Nat. Rev. Cancer, 2002, 2(4):266~276. 

    23. [23]

      M Stohrer, Y Boucher, M Stangassinger et al. Cancer Res., 2000, 60(15):4251~4255.

    24. [24]

      H Suzuki, Y H Bae. Biomaterials, 2016, 98:120~130. 

    25. [25]

      V P Chauhan, T Stylianopoulos, Y Boucher et al. Annu. Rev. Chem. Biomol. Eng., 2011, 2:281~298.

    26. [26]

      R H Thomlinson, L H Gray. Br. J. Cancer, 1956, 9(4):539~549.

    27. [27]

      S Hauert, S Berman, R Nagpal et al. Nano Today, 2013, 8(6):566~576. 

    28. [28]

      Z Li, H Wang, Y Chen et al. Small, 2016, 12(20):2731~2340. 

    29. [29]

      H Yu, Z Cui, P Yu et al. Adv. Funct. Mater., 2015, 25(17):2489~2500. 

    30. [30]

      I F Tannock, C M Lee, J K Tunggal et al. Clin. Cancer Res., 2002, 8(3):878~884.

    31. [31]

      K N Sugahara, T Teesalu, P P Karmali et al. Cancer Cell, 2009, 16(6):510~520. 

    32. [32]

      D Ni, H Ding, S Liu et al. Small, 2015, 11(21):2518~2526. 

    33. [33]

      Y Kim, J Bae, T Shin et al. J. Control. Rel., 2015, 216(1):56~68.

    34. [34]

      X Jiang, H Xin, J Gu et al. Biomaterials, 2013, 34(6):1739~1746. 

    35. [35]

      R M Phillips, P M Loadman, B P Cronin. Br. J. Cancer, 1998, 77(12):2112~2119. 

    36. [36]

      A E Nel, L Madler, D Velegol et al. Nat. Mater., 2009, 8:543~557. 

    37. [37]

      J Su, H Sun, Q Meng et al. Adv. Funct. Mater., 2016, 26(8), 1243~1252.

    38. [38]

      H Traboulsi, H Larkin, M A Bonin et al. Bioconj. Chem., 2015, 26(3):405~411. 

    39. [39]

      Z Qian, A Martyna, R L Hard et al. Biochemistry, 2016, 55:2601~2612. 

    40. [40]

      E Fleige, M A Quadir, R Haag. Adv. Drug Deliv. Rev., 2012, 64(9):866~884. 

    41. [41]

      K Kooiman, H J Vos, M Versluis et al. Adv. Drug Deliv. Rev., 2014, 72(22):28~48.

    42. [42]

      I F Tannock, C Lee, J K Tunggal et al. Clin. Cancer Res., 2002, 8(3):878~884.

    43. [43]

      J Y Lee, D Carugo, C Crake et al. Adv. Mater., 2015, 27(37):5484~5492. 

    44. [44]

      B Theek, M Baues, T Ojha et al. J. Control. Rel., 2016, 231:77~85. 

    45. [45]

      Y C Chang. Theranostics, 2016, 6(3):392~403. 

    46. [46]

      S R Sirsi, M A Borden. Adv. Drug Deliv. Rev., 2014, 72(1):3~14.

    47. [47]

      J Cao, S Huang, Y Chen et al. Biomaterials, 2013, 34:6272~6283. 

    48. [48]

      L Wang, Y Yuan, S Lin et al. Biomaterials, 2016, 78:40~49. 

    49. [49]

      C Puig-Saus, L A Rojas, E Laborda et al. Gene Ther., 2014, 21(8):767~774. 

    50. [50]

      K N Sugahara, P Scodeller, G B Braun et al. J. Control. Rel., 2015, 212:59~69. 

    51. [51]

      K Wang, X Zhang, Y Liu et al. Biomaterials, 2014, 35(30):8735~8747. 

    52. [52]

      K N Sugahara, T Teesalu, P P Karmali et al. Science, 2010, 328(5981):1031~1035. 

    53. [53]

      K N Sugahara, T Teesalu, P P Karmali et al. Cancer Cell, 2009, 16(6):510~520. 

    54. [54]

      E Jin, B Zhang, X Sun et al. J. Am. Chem. Soc., 2013, 135(2):933~940. 

    55. [55]

      M R Villegas, A Baeza, M Vallet-Regí. ACS Appl. Mater. Interf., 2015, 7(43):24075~24081. 

    56. [56]

      S M Sagnella, H Duong, A MacMillan et al. Biomacromolecules, 2014, 15(1):262~275. 

    57. [57]

      X Li, X Zhu, L Qiu. Acta Biomater., 2016, 35:269~279. 

    58. [58]

      A M Al-Abd, Z K Aljehani, R W Gazzaz et al. J. Control. Rel., 2015, 219:269~277. 

    59. [59]

      D Min, D Jeong, M G Choi et al. Biomaterials, 2015, 52(1):484~493.

    60. [60]

      F Curnis, A Sacchi, A Corti. J. Clin. Invest., 2002, 110(4):475~482. 

    61. [61]

      M Rescigno, M Urbano, B Valzasina et al. Nat. Immunol., 2001, 2(4):361~367. 

    62. [62]

      H Kuh, S H Jang, M G Wientjes et al. J. Pharmacol. Exp. Ther., 1999, 290(2):871~880.

    63. [63]

      R Tong, H D Hemmati, R Langer et al. J. Am. Chem. Soc., 2012, 134(21):8848~8855. 

    64. [64]

      E Vlashi, L E Kelderhouse, J E Sturgis et al. ACS Nano, 2013, 7(10):8573~8582. 

    65. [65]

      S Ruan, X Cao, X Cun et al. Biomaterials, 2015, 60:100~110. 

    66. [66]

      S Ruan, Q He, H Gao. Nanoscale, 2015, 7(21):9487~9496. 

    67. [67]

      X Cun, S Ruan, J Chen et al. Acta Biomater., 2016, 31(1):186~196.

    68. [68]

      Z Popovic, W Liu, V P Chauhan et al. Angew. Chem. Int. Ed., 2010, 49(46):8649~8652.

    69. [69]

      W Jiang, B Y S Kim, J T Rutka et al. Nat. Nanotechnol., 2008, 3(3):145~150. 

    70. [70]

      A S Mikhail, S Eetezadi, S N Ekdawi et al. Int. J. Pharm., 2014, 464(12):168~177.

    71. [71]

      L Tang, N P Gabrielson, F M Uckun et al. J. Mol. Pharm., 2013, 10(3):883~892. 

    72. [72]

      L Tang, X Yang, Q Yin et al. PNAS, 2014, 111(43):15344~15349. 

    73. [73]

      J Wang, W Mao, L L Lock et al. ACS Nano, 2015, 9(7):7195~7206. 

    74. [74]

      V P Chauhan, T Stylianopoulos, J D Martin et al. Nat. Nanotechnol., 2012, 7(6):383~388. 

    75. [75]

      H Cabral, Y Matsumoto, K Mizuno et al. Nat. Nanotechnol., 2011, 6(12):815~823. 

    76. [76]

      R Mo, Q Sun, J Xue et al. Adv. Mater., 2012, 24(27):3659~3665. 

    77. [77]

      C Ju, R Mo, J Xue et al. Angew. Chem. Int. Ed., 2014, 53(24):6367~6372.

    78. [78]

      H J Li, J Z Du, J Liu et al. ACS Nano, 2016, 10(7):6753~6761. 

    79. [79]

      H Liang, X Ren, J Qian et al. ACS Appl. Mater. Interf., 2016, 8(16):10136~10146. 

    80. [80]

      H Li, J Du, X Du et al. PNAS, 2016, 113(15):4164~4169. 

    81. [81]

      M R Longmire, P L Choyke, H Kobayashi. Nanomedicine:NBM, 2008, 3(5):703~717. 

    82. [82]

      S Wang, P Huang, X Chen. Adv. Mater., 2016, 28(34):7340~7364 

    83. [83]

      T Stylianopoulos, M Poh, N Insin et al. Biophys. J., 2010, 99(5):1342~1349. 

    84. [84]

      H Wang, Z Zuo, J Du et al. Nano Today, 2016, 11(2):133~144. 

    85. [85]

      S Miura, H Suzuki, Y H Bae. Nano Today, 2014, 9(6):695~704. 

    86. [86]

      J Li, X Yu, Y Wang et al. Adv. Mater., 2014, 26(48):8217~8224. 

    87. [87]

      X Liu, J Xiang, D Zhu et al. Adv. Mater., 2016, 28(9):1743~1752. 

    88. [88]

      Z Zhou, Y Shen, J Tang et al. Adv. Funct. Mater., 2009, 19(22):3580~3589. 

    89. [89]

      G Zhou, Y Xu, M Chen et al. Polym. Chem., 2016, 7(23):3857~3863. 

    90. [90]

      V P Chauhan, Z Popovic', O Chen et al. Angew. Chem. Int. Ed., 2011, 50(48):11417~11420.

    91. [91]

      B D Chithrani, A A Ghazani, W C W Chan. Nano Lett., 2006, 6(4):662~668. 

    92. [92]

      R Agarwal, V Singh, P Jurney et al. PNAS, 2013, 110:17247~17252. 

    93. [93]

      N P Truong, M R Whittaker, C W Mak et al. Expert Opin. Drug Del., 2014, 12(1):129~142.

    94. [94]

      S Schottler, G Becker, S Winzen et al. Nat. Nanotechnol., 2016, 11(4):372~377. 

    95. [95]

      J S Suk, Q Xu, N Kim et al. Adv. Drug Deliv. Rev., 2016, 99:28~51. 

    96. [96]

      G Wang, Y Chen, P Wang et al. Acta Biomater., 2016, 29:248~260. 

    97. [97]

      T Ji, Y Ding, Y Zhao et al. Adv. Mater., 2015, 27(11):1865~1873. 

    98. [98]

      J Lee, J Kim, M Jeong et al. Nano Lett., 2015, 15(5):2938~2944. 

    99. [99]

      A Wang, D Liang, Y Liu et al. Biomaterials, 2015, 53:160~172. 

    100. [100]

      N Wolmark, E R Fisher, H S Wieand et al. Cancer, 1984, 53(12):2707~2712. 

    101. [101]

      E K Rofstad, K Galappathi, B S Mathiesen. Neoplasia, 2014, 16(7):586~594. 

    102. [102]

      G Griffonetienne, Y Boucher, C Brekken et al. Cancer Res., 1999, 59(15):3776~3782.

    103. [103]

      A Sen, M L Capitano, J A Spernyak et al. Cancer Res., 2011, 71(11):3872~3880. 

    104. [104]

       

    105. [105]

      R M Sutherland. Science, 1988, 240(4849):177~184. 

    106. [106]

      K Shield, M L Ackland, N Ahmed et al. Gynecol. Oncol., 2009, 113(1):143~148. 

    107. [107]

      J Lee, S Chung, H Cho et al. Adv. Funct. Mater., 2015, 25(24):3705~3717. 

    108. [108]

      Z Peng, J Kopecek. J. Am. Chem. Soc., 2015, 137(21):6726~6729. 

    109. [109]

      K O Hicks, S Ohms, P L Van Zijl et al. Br. J. Cancer, 1997, 76(7):894~903. 

    110. [110]

      R M Phillips, P M Loadman, B P Cronin. Br. J. Cancer, 1998, 77(12):2112~2119. 

    111. [111]

      A Azagury, L Khoury, Y Adato et al. J. Control. Rel., 2015, 200(1):35~41.

    112. [112]

      Y Brudno, D J Mooney. J. Control. Rel., 2015, 219:8~17. 

    113. [113]

      Y H Yun, B K Lee, K Park. J. Control. Rel., 2015, 219:2~7. 

  • 加载中
    1. [1]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    2. [2]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    3. [3]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    4. [4]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    5. [5]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    6. [6]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    7. [7]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    8. [8]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    9. [9]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    10. [10]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    11. [11]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    12. [12]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    13. [13]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    16. [16]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    17. [17]

      Xiuya Ma Yu Chen Yan Zhang . Stories about Pharmaceuticals. University Chemistry, 2025, 40(7): 232-240. doi: 10.12461/PKU.DXHX202408003

    18. [18]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    19. [19]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    20. [20]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(69)
  • Abstract views(5368)
  • HTML views(1781)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return