Citation: YANG Huan, WANG Gui-yun, TIAN Wei-song, TONG Chun-jie. Hydrothermal synthesis of monoclinic WO3 and its photocatalytic hydrogen production performance[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(11): 1359-1369. shu

Hydrothermal synthesis of monoclinic WO3 and its photocatalytic hydrogen production performance

  • Corresponding author: WANG Gui-yun, wgy1964@hebut.edu.cn
  • Received Date: 17 July 2018
    Revised Date: 16 September 2018

    Fund Project: National Natural Science Foundation of Hebei Province B2014202004The project was supported by the National Natural Science Foundation of China (21076058) and National Natural Science Foundation of Hebei Province (B2014202004)the National Natural Science Foundation of China 21076058

Figures(15)

  • Monoclinic WO3 was successfully synthesized by the hydrothermal method using sodium tungstate as tungsten source, nitric acid as acid source, and citric acid (tartaric acid) as surfactant. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflectance (UV-vis-DR), and Brunner-Emmet-Teller (BET) were employed to characterize the structure and morphology of WO3. The effects of molar ratios of nitric acid and citric acid (tartaric acid) to tungsten atoms on crystal phases and morphologies of WO3 were investigated in detail. The results indicated that large amounts of nitric acid and addition of hydroxyl acids were found favorable for the formation of monoclinic WO3. Monoclinic WO3 was achieved under suitable conditions of molar ratios of nitric acid to tungsten atom of 2.8:1 and hydroxyl acids to tungsten atom of 0.8:1. The WO3 was coupled with p-type semiconductor CuCrO2 to fabricate the CuCrO2-WO3 composite photocatalyst. It was used for hydrogen production from photocatalytic decomposition of water. The monoclinic WO3 with high crystalline perfection exhibited better photocatalytic properties.
  • 加载中
    1. [1]

      LI N, ZHAO Y, WANG Y, LU Y, SONG Y H, HUANG Z F, LI Y W, ZHAO J Z. Aqueous synthesis and visible-light photochromism of metastable h-WO3 hierarchical nanostructures[J]. Eur J Inorg Chem, 2015,17:2804-2812.  

    2. [2]

      HUANG R, SHEN Y, ZHAO L, YAN M Y. Effect of hydrothermal temperature on structure and photochromic properties of WO3 powder[J]. Adv Powder Technol, 2012,23:211-214. doi: 10.1016/j.apt.2011.02.009

    3. [3]

      SONG Jing-jing, WANG Ping-ping, YAN Hui, ZHANG Xian-feng, LI Qian. Influence of malic acid dosage on structure and photochromic properties of WO3 nano-powders[J]. J Chin Ceram Soc, 2016,44(7):976-980.  

    4. [4]

      JIAO Z H, WANG J M, LIN K, LIU X W, DEMIR H V, YANG M F, SUN X W. Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device[J]. Electrochim Acta, 2012,63:153-160. doi: 10.1016/j.electacta.2011.12.069

    5. [5]

      ZHENG F, MAN W K, GUO M, ZHANG M, ZHEN Q. Effects of morphology, size and crystallinity on the electrochromic properties of nanostructured WO3 films[J]. Cryst Eng Comm, 2015,17:5440-5450. doi: 10.1039/C5CE00832H

    6. [6]

      PENG Ming-dong, ZHANG Yu-zhi, SONG Li-xin, YIN Xiao-fu, WANG Pan-pan, WU Ling-nan, HU Xing-fang. Structure and electrochromic properties of titanium-doped WO3 thin film by sputtering[J]. J Inorg Mater, 2017,32(3):287-292.  

    7. [7]

      TAKÁCS M, DÜCSÖ C, LÁBADI Z, PAP A E. Effect of hexagonal WO3 morphology on NH3 sensing[J]. Procedia Eng, 2014,87:1011-1014. doi: 10.1016/j.proeng.2014.11.331

    8. [8]

      MIAO B, ZENG W, MU Y J, YU W J, HUSSAIN S, XU S B, ZHANG H, LI T M. Controlled synthesis of monodisperse WO3·H2O square nanoplates and their gas sensing properties[J]. Appl Surf Sci, 2015,349:380-386. doi: 10.1016/j.apsusc.2015.04.226

    9. [9]

      CAO S X, ZHAO C, HAN T, PENG L L. Hydrothermal synthesis, characterization and gas sensing properties of the WO3 nanofibers[J]. Mater Lett, 2016,169:17-20. doi: 10.1016/j.matlet.2016.01.053

    10. [10]

      LUO Jian-yi, ZHANG Yu, CHEN Xue-xian, LI Wei-da, DENG Wei-yuan, ZHOU Yang-yang. Study on the sensing property of Pt coated WO3 nanowire film for high concentration of H2 gas[J]. J Synth Cryst, 2013,42(10):2109-2120. doi: 10.3969/j.issn.1000-985X.2013.10.026

    11. [11]

      CHEN D, YE J H. Hierarchical WO3 hollow shells:Dendrite, sphere, dumbbell, and their photocatalytic properties[J]. Adv Funct Mater, 2010,18:1922-1928.  

    12. [12]

      XIE Y P, LIU G, YIN L C, CHENG H M. Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion[J]. J Mater Chem, 2012,22:6746-6751. doi: 10.1039/c2jm16178h

    13. [13]

      BATHE S R, PATIL P S. Electrochromic characteristics of pulsed spray pyrolyzed polycrystalline WO3 thin films[J]. Smart Mater Struct, 2009,18:1-7.  

    14. [14]

      GUERY C, CHOQUET C, DUJEANCOURT F, TARASCON J C, LASSEGUES J C. Infrared and X-ray studies of hydrogen intercalation in different tungsten trioxides and tungsten trioxide hydrates[J]. J Solid State Electrochem, 1997,1:199-207. doi: 10.1007/s100080050049

    15. [15]

      CHEN D L, WANG H L, ZHANG R, GAO L, SUGAHARAC Y. YASUMORI A.. Single-crystalline tungsten oxide nanoplates[J]. J Ceram Process Res, 2008,9:596-600.  

    16. [16]

      CHEN D L, GAO L, YASUMORI A, KURODA K, SUGAHARA Y. Size-and shape-controlled conversion of tungstate-based inorganic-organic hybrid belts to WO3 nanoplates with high specific surface areas[J]. Small, 2008,4:1813-1822. doi: 10.1002/smll.v4:10

    17. [17]

      LI X X, ZHANG G Y, CHENG F Y, GUO B. CHEN J.. Synthesis, characterization, and gas-sensor application of WO3 nanocuboids[J]. J Electrochem Soc, 2006,153:133-137.  

    18. [18]

      CHEN Q P, LI J H, ZHOU B X, LONG M C, CHEN H C, LIU Y B, CAI W M, SHANGGUAN W F. Preparation of well-aligned WO3 nanoflake arrays vertically grown on tungsten substrate as photoanode for photoelectrochemical water splitting[J]. Electrochem Commun, 2012,20:153-156. doi: 10.1016/j.elecom.2012.03.043

    19. [19]

      XIN G, GUO W, MA T L. Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution[J]. Appl Surf Sci, 2009,256:165-169. doi: 10.1016/j.apsusc.2009.07.102

    20. [20]

      ZHANG H L, YANG J Q, LI D, GUO W, QIN Q, ZHU L J, ZHENG W J. Template-free facile preparation of monoclinic WO3 nanoplates and their high photocatalytic activities[J]. Appl Surf Sci, 2014,305:274-280. doi: 10.1016/j.apsusc.2014.03.061

    21. [21]

      ZHU W Y, LIU J C, YU S Y, ZHOU Y, YAN X L. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation[J]. J Hazard Mater, 2016,318:407-416. doi: 10.1016/j.jhazmat.2016.06.066

    22. [22]

      DIRANY N, ARAB M, LEROUX C, VILLAIN S, MADIGOU V, GAVARRI J R. Effect of WO3 nanoparticles morphology on the catalytic properties[J]. Mater Today:Proc, 2016,3:230-234. doi: 10.1016/j.matpr.2016.01.062

    23. [23]

      ZHOU J C, LIN S W, CHEN Y J, GASKOV A M. Facile morphology control of WO3 nanostructure arrays with enhanced photoelectrochemical performance[J]. Appl Surf Sci, 2017,403:274-281. doi: 10.1016/j.apsusc.2017.01.209

    24. [24]

      ZHANG R K, NING F Y, LEI S X, ZHOU L, SHAO M F, WEI M. Oxygen vacancy engineering of WO3 toward largely enhanced photoelectrochemical water splitting[J]. Electrochim Acta, 2018,274:217-223. doi: 10.1016/j.electacta.2018.04.109

    25. [25]

      ARIENZO M D, ARMELAO L, MARI C M, POLIZZI S, RUFFO R, SCOTTI R, MORAZZONI F. Surface interaction of WO3 nanocrystals with NH3 role of the exposed crystal surfaces and porous structure in enhancing the electrical response[J]. RSC Adv, 2014,4:11012-11022. doi: 10.1039/c3ra46726k

    26. [26]

      ZHANG H L, LIU Z F, Yang J Q, GUO W, ZHU L J, ZHENG W J. Temperature and acidity effects on WO3 nanostructures and gas-sensing properties of WO3 nanoplates[J]. Mater Res Bull, 2014,57:260-267. doi: 10.1016/j.materresbull.2014.06.013

    27. [27]

      WANG J M, KHOO E, LEE P S, MA J. Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte[J]. J Phys Chem C, 2009,113:9655-9658. doi: 10.1021/jp901650v

    28. [28]

      JARUPAT S, TITIPUN T, SOMCHAI T. Large-scale synthesis of WO3 nanoplates by a microwave-hydrothermal method[J]. Ceram Int, 2012,38:1051-1055. doi: 10.1016/j.ceramint.2011.08.030

    29. [29]

      SU X T, XIAO F, LI Y N, JIAN J K, SUN Q J, WANG J D. Synthesis of uniform WO3 square nanoplates via an organic acid-assisted hydrothermal process[J]. Mater Lett, 2010,64:1232-1234. doi: 10.1016/j.matlet.2010.02.063

    30. [30]

      ZHANG H, ZHAO H, JIANG Y Q, HOU S Y, ZHOU Z H, WAN H L. pH-and mol-ratio dependent tungsten(Ⅵ)/citrate speciation from aqueous solutions:syntheses, spectroscopic properties and crystal structures[J]. Inorg Chim Acta, 2003,351:311-318. doi: 10.1016/S0020-1693(03)00177-4

  • 加载中
    1. [1]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    2. [2]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    3. [3]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    8. [8]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    9. [9]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    15. [15]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    18. [18]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(12)
  • Abstract views(650)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return