Citation: WU Xian-shuang, HE Fang, WEI Guo-qiang, HUANG Zhen, ZHAO Kun, MENG Jun-guang, ZHAO Zeng-li, LI Hai-bin. Performance evaluation of Fe-Ni compound oxygen carriers derived from biochar template for chemical looping hydrogen generation[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(4): 500-512. shu

Performance evaluation of Fe-Ni compound oxygen carriers derived from biochar template for chemical looping hydrogen generation

  • Corresponding author: HE Fang, hefang@ms.giec.ac.cn
  • Received Date: 13 December 2017
    Revised Date: 12 March 2018

    Fund Project: the Science and Technology Program of Guangzhou 201707010202The project was supported by the Science & Technology Research Project of Guangdong Province (2015A010106009, 2015A020215023) and the Science and Technology Program of Guangzhou (201707010202)the Science & Technology Research Project of Guangdong Province 2015A020215023the Science & Technology Research Project of Guangdong Province 2015A010106009

Figures(13)

  • Fe-Ni oxygen carriers (Fe-Ni/BC) were prepared by using pine biochar as a template, and compared with NiFe2O4 oxygen carriers synthesized by sol-gel method. The obtained oxygen carriers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurement, hydrogen-temperature programmed reduction (H2-TPR), and thermos-gravimetric redox-cycling (TG-redox). Furthermore, the performance of chemical looping hydrogen generation was investigated in a fixed-bed reactor. The results show that the prepared Fe-Ni/BC is a mixed crystal of Ni0.6Fe2.4O4 and Fe2O3, retaining the framework of biochar and having a macroporous structure. Fe-Ni/BC outperforms NiFe2O4/SG in oxygen release, because of small average particle size, high specific surface area and abundant surface absorbed oxygen. In the fixed-bed tests, Fe-Ni/BC exhibits a better capability of hydrogen production and anti-carbon deposition with the maximum rate of hydrogen production for Fe-Ni/BC, 1.58 times that for NiFe2O4/SG, and the relative concentration of H2 produced by Fe-Ni/BC is more than 99.5%.
  • 加载中
    1. [1]

      RICHTER H J. Reversibility of combustion processes[J]. Acs Sym Ser, 1983,235:71-85. doi: 10.1021/symposium

    2. [2]

      NANDY A, LOHA C, GU S, SARKAR P, KARMAKAR M K, CHATTERJEE P K. Present status and overview of chemical looping combustion technology[J]. Renewable Sustainable Energy Rev, 2016,59:597-619. doi: 10.1016/j.rser.2016.01.003

    3. [3]

      FAN L, ZENG L, LUO S. Chemical-looping technology platform[J]. AlChE J, 2015,61(1):2-22. doi: 10.1002/aic.14695

    4. [4]

      GUPTA P, AND V V, FAN L S. Syngas redox (SGR) process to produce hydrogen from coal derived syngas[J]. Energy Fuels, 2007,21(5):2900-2908. doi: 10.1021/ef060512k

    5. [5]

      CHIESA P, LOZZA G, MALANDRINO A, ROMANO M, PICCOLO V. Three-reactors chemical looping process for hydrogen production[J]. Int J Hydrogen Energy, 2008,33(9):2233-2245. doi: 10.1016/j.ijhydene.2008.02.032

    6. [6]

      ADANEZ J, ABAD A, GARCIA-LABIANO F, GAYAN P, DIEGO L D. Progress in chemical-looping combustion and reforming technologies[J]. Prog Energy Combust, 2012,38(2):215-282. doi: 10.1016/j.pecs.2011.09.001

    7. [7]

      CHO P, MATTISSON T, LYNGFELT A. Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2004,83(9):1215-1225. doi: 10.1016/j.fuel.2003.11.013

    8. [8]

      RYDÉN M, LEION H, MATTISSON T, LYNGFELT A. Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling[J]. Appl Energy, 2014,113:1924-1932. doi: 10.1016/j.apenergy.2013.06.016

    9. [9]

      MATTISSON T, JOHANSSON M, LYNGFELT A. Multicycle reduction and oxidation of different types of iron oxide particles-Application to chemical-looping combustion[J]. Energy Fuels, 2004,18(3):628-637. doi: 10.1021/ef0301405

    10. [10]

      ZAFAR Q, MATTISSON T, GEVERT B. Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4[J]. Energy Fuels, 2006,20(1):34-44. doi: 10.1021/ef0501389

    11. [11]

      HAFIZI A, RAHIMPOUR M R, HASSANAJILI S. High purity hydrogen production via sorption enhanced chemical looping reforming:Application of 22Fe2O3/MgAl2O4 and 22Fe2O3/Al2O3 as oxygen carriers and cerium promoted CaO as CO2 sorbent[J]. Appl Energy, 2016,169:629-641. doi: 10.1016/j.apenergy.2016.02.068

    12. [12]

      LIU Shuai, HUANG Zhen, HE Fang, ZHENG An-qing, SHEN Yang, LI Hai-bin. Thermodynamic analysis of biomass char chemical looping combustion with NiFe2O4 as oxygen carrier[J]. Adv New Renew Energy, 2016,4(3):172-178.  

    13. [13]

      KANG K S, KIM C H, BAE K K, CHO W C, KIM S H, PARK C S. Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production[J]. Int J Hydrogen Energy, 2010,35(22):12246-12254. doi: 10.1016/j.ijhydene.2010.08.043

    14. [14]

      LI F, KIM H R, SRIDHAR D, WANG F, ZENG L, CHEN J, FAN L S. Syngas chemical looping gasification process:Oxygen carrier particle selection and performance[J]. Energy Fuels, 2009,23(8):4182-4189. doi: 10.1021/ef900236x

    15. [15]

      BOHN C D, CLEETON J P, MVLLER C R, CHUANG S Y, SCOTT S A, DENNIS J S. Stabilizing iron oxide used in cycles of reduction and oxidation for hydrogen production[J]. Energy Fuels, 2010,24(7):4025-4033. doi: 10.1021/ef100199f

    16. [16]

      LIU W, DENNIS J S, SCOTT S A. The effect of addition of ZrO2 to Fe2O3 for hydrogen production by chemical looping[J]. Ind Eng Chem Res, 2012,51(51):16597-16609. doi: 10.1021/ie302626x

    17. [17]

      LIU S, HE F, HUANG Z, ZHENG A, FENG Y, SHEN Y, LI H, WU H, GLARBORG P. Screening of NiFe2O4 nanoparticles as oxygen carrier in chemical looping hydrogen production[J]. Energy Fuels, 2016,30(5):4251-4262. doi: 10.1021/acs.energyfuels.6b00284

    18. [18]

      MEI Dao-feng, ZHAO Hai-bo, MA Zhao-jun, ZHENG Chu-guang. Preparation method study on Fe2O3/Al2O3 oxygen carrier[J]. J Fuel Chem Technol, 2012,40(7):795-802.  

    19. [19]

      LIU Zi-song, WEI Yong-gang, LI Kong-zhai, WANG Hua, ZHU Xing, DU Yun-peng. Fe2O3/Al2O3 oxygen carriers for chemical looping combustion of methane:Influence of Fe2O3 loadings and preparation methods[J]. J Fuel Chem Technol, 2013,41(11):1384-1392.  

    20. [20]

      NEAL L, SHAFIEFARHOOD A, LI F. Effect of core and shell compositions on MeOx@LaySr1-yFeO3 core-shell redox catalysts for chemical looping reforming of methane[J]. Appl Energy, 2015,157:391-398. doi: 10.1016/j.apenergy.2015.06.028

    21. [21]

      SHAFIEFARHOOD A, GALINSKY N, HUANG A Y, CHEN Y, LI A F. Fe2O3@LaxSr1-xFeO3 core-shell redox catalyst for methane partial oxidation[J]. ChemCatChem, 2014,6(3):790-799. doi: 10.1002/cctc.201301104

    22. [22]

      ZHAO K, HE F, HUANG Z, ZHENG A, LI H, ZHAO Z. Three-dimensionally ordered macroporous LaFeO3 perovskites for chemical-looping steam reforming of methane[J]. Int J Hydrogen Energy, 2014,39(7):3243-3252. doi: 10.1016/j.ijhydene.2013.12.046

    23. [23]

      HE F, ZHAO K, ZHEN H, LI X A, WEI G Q, LI H B. Synthesis of three-dimensionally ordered macroporous LaFeO3 perovskites and their performance for chemical-looping reforming of methane[J]. Chin J Catal, 2013,34(6):1242-1249. doi: 10.1016/S1872-2067(12)60563-4

    24. [24]

      QIAN K Z, KUMAR A, ZHANG H L, BELLMER D, HUHNKE R. Recent advances in utilization of biochar[J]. Renewable Sustainable Energy Rev, 2015,42(1):1055-1064.  

    25. [25]

      LEE J, KIM K H, KWON E E. Biochar as a catalyst[J]. Renewable Sustainable Energy Rev, 2017,77:70-79. doi: 10.1016/j.rser.2017.04.002

    26. [26]

      LU Hai-nan, HU Xue-yu, LIU Hong-wei. Influence of pyrolysis conditions on stability of biochar[J]. Environ Sci Technol, 2013,36(8):11-14.  

    27. [27]

      JIAN Min-fei, GAO Kai-fang, YU Hou-ping. Effects of different pyrolysis temperatures on the preparation and characteristics of biochar from rice straw[J]. J Environ Sci, 2016,36(5):1757-1765.  

    28. [28]

      UCHIMIYA M, WARTELLE L H, KLASSON K T, FORTIER C A, LIMA I M. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil[J]. J Agr Food Chem, 2011,59(6):2501-2510. doi: 10.1021/jf104206c

    29. [29]

      AHMAD M, RAJAPAKSHA A U, LIM J E, ZHANG M, BOLAN N, MOHAN D, VITHANAGE M, LEE S S, OK Y S. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014,99:19-33. doi: 10.1016/j.chemosphere.2013.10.071

    30. [30]

      UCHIMIYA M, LIMA I M, KLASSON K T, WARTELLE L H. Contaminant immobilization and nutrient release by biochar soil amendment:Roles of natural organic matter[J]. Chemosphere, 2010,80(8):935-940. doi: 10.1016/j.chemosphere.2010.05.020

    31. [31]

      UCHIMIYA M, KLASSON K T, WARTELLE L H, LIMA I M. Influence of soil properties on heavy metal sequestration by biochar amendment:1. Copper sorption isotherms and the release of cations[J]. Chemosphere, 2011,82(10):1431-1437. doi: 10.1016/j.chemosphere.2010.11.050

    32. [32]

      FAHMI R, BRIDGWATER A V, DARVELL L I, JONES J M, YATES N, THAIN S, DONNISON I S. The effect of alkali metals on combustion and pyrolysis of lolium and festuca grasses, switch grass and willow[J]. Fuel, 2007,86(10/11):1560-1569.  

    33. [33]

      BUELENS L C, GALVITA V V, POELMAN H, DETAVERNIER C, MARIN G B. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle[J]. Sci, 2016,354(6311):449-452. doi: 10.1126/science.aah7161

    34. [34]

      FLORIN N H, HARRIS A T. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents[J]. Chem Eng Sci, 2008,63(2):287-316. doi: 10.1016/j.ces.2007.09.011

    35. [35]

      WANG X Y, KANG Q, LI D. Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J]. Catal Commun, 2008,9(13):2158-2162. doi: 10.1016/j.catcom.2008.04.021

    36. [36]

      SHEN Y F, ZHAO P, SHAO Q, MA D, TAKAHASHI F, YOSHIKAWA K. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification[J]. Appl Catal B:Environ, 2014,152:140-151.  

    37. [37]

      ZHENG Y, LI K, WANG H, TIAN D, WANG Y, ZHU X, WEI Y, ZHENG M, LUO Y. Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane[J]. Appl Catal B:Environ, 2017,202:51-63. doi: 10.1016/j.apcatb.2016.08.024

    38. [38]

      BENRABAA R, LÖFBERG A, RUBBENS A, BORDES-RICHARD E, VANNIER R N, BARAMA A. Structure, reactivity and catalytic properties of nanoparticles of Nickel ferrite in the dry reforming of methane[J]. Catal Today, 2013,203(5):188-195.  

    39. [39]

      CHAMOUMI M, ABATZOGLOU N. NiFe2O4 production from α-Fe2O3 via improved solid state reaction:Application as catalyst in CH4 dry reforming[J]. Can J Chem Eng, 2016,94(9):1801-1808. doi: 10.1002/cjce.v94.9

  • 加载中
    1. [1]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    2. [2]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    7. [7]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    8. [8]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    9. [9]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    10. [10]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    11. [11]

      Shangwen Luo Jianguo Fang Yanlong Yang Shihui Dong . 化学生物学课程双语教学实践与探索. University Chemistry, 2025, 40(8): 124-129. doi: 10.12461/PKU.DXHX202410096

    12. [12]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    15. [15]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    16. [16]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    17. [17]

      Fangfang Chen Haiming Fan Yan Li Yuan He . 化学生物学专业多元化人才培养导向的课程体系优化探索. University Chemistry, 2025, 40(8): 92-99. doi: 10.12461/PKU.DXHX202409108

    18. [18]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    19. [19]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    20. [20]

      Zhen Shen Yi Wang Chen Lin Kin Shing Chan . 南京大学化学生物学专业本科生有机化学英文教学经验. University Chemistry, 2025, 40(6): 43-47. doi: 10.12461/PKU.DXHX202407083

Metrics
  • PDF Downloads(13)
  • Abstract views(1512)
  • HTML views(355)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return