Performance evaluation of Fe-Ni compound oxygen carriers derived from biochar template for chemical looping hydrogen generation
- Corresponding author: HE Fang, hefang@ms.giec.ac.cn
Citation:
WU Xian-shuang, HE Fang, WEI Guo-qiang, HUANG Zhen, ZHAO Kun, MENG Jun-guang, ZHAO Zeng-li, LI Hai-bin. Performance evaluation of Fe-Ni compound oxygen carriers derived from biochar template for chemical looping hydrogen generation[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(4): 500-512.
RICHTER H J. Reversibility of combustion processes[J]. Acs Sym Ser, 1983,235:71-85. doi: 10.1021/symposium
NANDY A, LOHA C, GU S, SARKAR P, KARMAKAR M K, CHATTERJEE P K. Present status and overview of chemical looping combustion technology[J]. Renewable Sustainable Energy Rev, 2016,59:597-619. doi: 10.1016/j.rser.2016.01.003
FAN L, ZENG L, LUO S. Chemical-looping technology platform[J]. AlChE J, 2015,61(1):2-22. doi: 10.1002/aic.14695
GUPTA P, AND V V, FAN L S. Syngas redox (SGR) process to produce hydrogen from coal derived syngas[J]. Energy Fuels, 2007,21(5):2900-2908. doi: 10.1021/ef060512k
CHIESA P, LOZZA G, MALANDRINO A, ROMANO M, PICCOLO V. Three-reactors chemical looping process for hydrogen production[J]. Int J Hydrogen Energy, 2008,33(9):2233-2245. doi: 10.1016/j.ijhydene.2008.02.032
ADANEZ J, ABAD A, GARCIA-LABIANO F, GAYAN P, DIEGO L D. Progress in chemical-looping combustion and reforming technologies[J]. Prog Energy Combust, 2012,38(2):215-282. doi: 10.1016/j.pecs.2011.09.001
CHO P, MATTISSON T, LYNGFELT A. Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2004,83(9):1215-1225. doi: 10.1016/j.fuel.2003.11.013
RYDÉN M, LEION H, MATTISSON T, LYNGFELT A. Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling[J]. Appl Energy, 2014,113:1924-1932. doi: 10.1016/j.apenergy.2013.06.016
MATTISSON T, JOHANSSON M, LYNGFELT A. Multicycle reduction and oxidation of different types of iron oxide particles-Application to chemical-looping combustion[J]. Energy Fuels, 2004,18(3):628-637. doi: 10.1021/ef0301405
ZAFAR Q, MATTISSON T, GEVERT B. Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4[J]. Energy Fuels, 2006,20(1):34-44. doi: 10.1021/ef0501389
HAFIZI A, RAHIMPOUR M R, HASSANAJILI S. High purity hydrogen production via sorption enhanced chemical looping reforming:Application of 22Fe2O3/MgAl2O4 and 22Fe2O3/Al2O3 as oxygen carriers and cerium promoted CaO as CO2 sorbent[J]. Appl Energy, 2016,169:629-641. doi: 10.1016/j.apenergy.2016.02.068
LIU Shuai, HUANG Zhen, HE Fang, ZHENG An-qing, SHEN Yang, LI Hai-bin. Thermodynamic analysis of biomass char chemical looping combustion with NiFe2O4 as oxygen carrier[J]. Adv New Renew Energy, 2016,4(3):172-178.
KANG K S, KIM C H, BAE K K, CHO W C, KIM S H, PARK C S. Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production[J]. Int J Hydrogen Energy, 2010,35(22):12246-12254. doi: 10.1016/j.ijhydene.2010.08.043
LI F, KIM H R, SRIDHAR D, WANG F, ZENG L, CHEN J, FAN L S. Syngas chemical looping gasification process:Oxygen carrier particle selection and performance[J]. Energy Fuels, 2009,23(8):4182-4189. doi: 10.1021/ef900236x
BOHN C D, CLEETON J P, MVLLER C R, CHUANG S Y, SCOTT S A, DENNIS J S. Stabilizing iron oxide used in cycles of reduction and oxidation for hydrogen production[J]. Energy Fuels, 2010,24(7):4025-4033. doi: 10.1021/ef100199f
LIU W, DENNIS J S, SCOTT S A. The effect of addition of ZrO2 to Fe2O3 for hydrogen production by chemical looping[J]. Ind Eng Chem Res, 2012,51(51):16597-16609. doi: 10.1021/ie302626x
LIU S, HE F, HUANG Z, ZHENG A, FENG Y, SHEN Y, LI H, WU H, GLARBORG P. Screening of NiFe2O4 nanoparticles as oxygen carrier in chemical looping hydrogen production[J]. Energy Fuels, 2016,30(5):4251-4262. doi: 10.1021/acs.energyfuels.6b00284
MEI Dao-feng, ZHAO Hai-bo, MA Zhao-jun, ZHENG Chu-guang. Preparation method study on Fe2O3/Al2O3 oxygen carrier[J]. J Fuel Chem Technol, 2012,40(7):795-802.
LIU Zi-song, WEI Yong-gang, LI Kong-zhai, WANG Hua, ZHU Xing, DU Yun-peng. Fe2O3/Al2O3 oxygen carriers for chemical looping combustion of methane:Influence of Fe2O3 loadings and preparation methods[J]. J Fuel Chem Technol, 2013,41(11):1384-1392.
NEAL L, SHAFIEFARHOOD A, LI F. Effect of core and shell compositions on MeOx@LaySr1-yFeO3 core-shell redox catalysts for chemical looping reforming of methane[J]. Appl Energy, 2015,157:391-398. doi: 10.1016/j.apenergy.2015.06.028
SHAFIEFARHOOD A, GALINSKY N, HUANG A Y, CHEN Y, LI A F. Fe2O3@LaxSr1-xFeO3 core-shell redox catalyst for methane partial oxidation[J]. ChemCatChem, 2014,6(3):790-799. doi: 10.1002/cctc.201301104
ZHAO K, HE F, HUANG Z, ZHENG A, LI H, ZHAO Z. Three-dimensionally ordered macroporous LaFeO3 perovskites for chemical-looping steam reforming of methane[J]. Int J Hydrogen Energy, 2014,39(7):3243-3252. doi: 10.1016/j.ijhydene.2013.12.046
HE F, ZHAO K, ZHEN H, LI X A, WEI G Q, LI H B. Synthesis of three-dimensionally ordered macroporous LaFeO3 perovskites and their performance for chemical-looping reforming of methane[J]. Chin J Catal, 2013,34(6):1242-1249. doi: 10.1016/S1872-2067(12)60563-4
QIAN K Z, KUMAR A, ZHANG H L, BELLMER D, HUHNKE R. Recent advances in utilization of biochar[J]. Renewable Sustainable Energy Rev, 2015,42(1):1055-1064.
LEE J, KIM K H, KWON E E. Biochar as a catalyst[J]. Renewable Sustainable Energy Rev, 2017,77:70-79. doi: 10.1016/j.rser.2017.04.002
LU Hai-nan, HU Xue-yu, LIU Hong-wei. Influence of pyrolysis conditions on stability of biochar[J]. Environ Sci Technol, 2013,36(8):11-14.
JIAN Min-fei, GAO Kai-fang, YU Hou-ping. Effects of different pyrolysis temperatures on the preparation and characteristics of biochar from rice straw[J]. J Environ Sci, 2016,36(5):1757-1765.
UCHIMIYA M, WARTELLE L H, KLASSON K T, FORTIER C A, LIMA I M. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil[J]. J Agr Food Chem, 2011,59(6):2501-2510. doi: 10.1021/jf104206c
AHMAD M, RAJAPAKSHA A U, LIM J E, ZHANG M, BOLAN N, MOHAN D, VITHANAGE M, LEE S S, OK Y S. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014,99:19-33. doi: 10.1016/j.chemosphere.2013.10.071
UCHIMIYA M, LIMA I M, KLASSON K T, WARTELLE L H. Contaminant immobilization and nutrient release by biochar soil amendment:Roles of natural organic matter[J]. Chemosphere, 2010,80(8):935-940. doi: 10.1016/j.chemosphere.2010.05.020
UCHIMIYA M, KLASSON K T, WARTELLE L H, LIMA I M. Influence of soil properties on heavy metal sequestration by biochar amendment:1. Copper sorption isotherms and the release of cations[J]. Chemosphere, 2011,82(10):1431-1437. doi: 10.1016/j.chemosphere.2010.11.050
FAHMI R, BRIDGWATER A V, DARVELL L I, JONES J M, YATES N, THAIN S, DONNISON I S. The effect of alkali metals on combustion and pyrolysis of lolium and festuca grasses, switch grass and willow[J]. Fuel, 2007,86(10/11):1560-1569.
BUELENS L C, GALVITA V V, POELMAN H, DETAVERNIER C, MARIN G B. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle[J]. Sci, 2016,354(6311):449-452. doi: 10.1126/science.aah7161
FLORIN N H, HARRIS A T. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents[J]. Chem Eng Sci, 2008,63(2):287-316. doi: 10.1016/j.ces.2007.09.011
WANG X Y, KANG Q, LI D. Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J]. Catal Commun, 2008,9(13):2158-2162. doi: 10.1016/j.catcom.2008.04.021
SHEN Y F, ZHAO P, SHAO Q, MA D, TAKAHASHI F, YOSHIKAWA K. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification[J]. Appl Catal B:Environ, 2014,152:140-151.
ZHENG Y, LI K, WANG H, TIAN D, WANG Y, ZHU X, WEI Y, ZHENG M, LUO Y. Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane[J]. Appl Catal B:Environ, 2017,202:51-63. doi: 10.1016/j.apcatb.2016.08.024
BENRABAA R, LÖFBERG A, RUBBENS A, BORDES-RICHARD E, VANNIER R N, BARAMA A. Structure, reactivity and catalytic properties of nanoparticles of Nickel ferrite in the dry reforming of methane[J]. Catal Today, 2013,203(5):188-195.
CHAMOUMI M, ABATZOGLOU N. NiFe2O4 production from α-Fe2O3 via improved solid state reaction:Application as catalyst in CH4 dry reforming[J]. Can J Chem Eng, 2016,94(9):1801-1808. doi: 10.1002/cjce.v94.9
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
Ying Zhang , Fang Ge , Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Gonglan Ye , Xia Yin , Feng Xu , Peng Yang , Yingpeng Wu , Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
(a): biochar; (b): biochar impregnated with nitrate; (c), (d), (e): Fe-Ni/BC; (f): NiFe2O4/SG
(a): gas yield rate; (b): gas yield
(a): reduced; (b): after 5-cycle reaction
(a): NiFe2O4/SG after 5-cycle reaction; (b): Fe-Ni/BC after 5-cycle reaction;
(c): NiFe2O4/SG after 10-cycle reaction; (d): Fe-Ni/BC after 10-cycle reaction