Citation: WANG Dong-xu, QI Chao, WANG Yang, LI Wen-yan, XIAO Hai-ping, KANG Zhi-zhong. Effect of CaO content on the ash fusibility of high sodium coal[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(9): 1025-1034. shu

Effect of CaO content on the ash fusibility of high sodium coal

  • Corresponding author: LI Wen-yan, liweny@126.com
  • Received Date: 20 April 2017
    Revised Date: 23 June 2017

    Fund Project: The project was supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAA04B02)National Key Technology Research and Development Program of the Ministry of Science and Technology of China 2015BAA04B02

Figures(10)

  • In order to study effect of CaO content on the ash fusibility of high sodium coal, high sodium synthetic coal ash samples with different CaO content were prepared and ash fusion temperatures (AFTs) were measured. Thermodynamic database FactSage 7.0 was applied to simulate the ash melting process, and the mineral conversion was analyzed. The minerals' composition and surface morphology of synthetic coal ash samples were investigated by X-ray diffraction (XRD) and scanning electronic microscope (SEM). The results show that the AFTs drop first and rise later with the increase of CaO content. CaO addition influences the existence form and relative mass of both calcium-containing and sodium-containing minerals. At 1 000℃, the calcium-containing minerals transform from anorthite to andradite, wollastonite, gehlenite, rankinite and larnite in turn. The sodium-containing minerals transform from albite to nepheline. The results of binary phase diagram and analogous ternary phase diagram indicate that variation of liquidus temperature is consistent with the AFTs with increasing CaO content. When the CaO content is higher than 40%, the AFTs could be improved efficiently for the coal sample.
  • 加载中
    1. [1]

      WANG X B, XU Z X, WEI B, ZHANG L, TAN H Z, YANG T, MIKULCIC H, DUIC N. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium:A study from ash evaporating to condensing[J]. Appl Therm Eng, 2015,80:150-159. doi: 10.1016/j.applthermaleng.2015.01.051

    2. [2]

      TAO Yu-jie, ZHANG Yan-wei, ZHOU Jun-hu, JING Xue-hui, LI Tao, LIU Jian-zhong, CEN Ke-fa. Mineral conversion regularity and release behavior of Na, Ca during Zhundong coal's combustion[J]. Proc CSEE, 2015,35(5):1169-1175.  

    3. [3]

      ZHANG Shou-yu, CHEN Chuan, SHI Da-zhong, LÜ Jun-fu, WANG Jian, GUO Xi, DONG Ai-xia, XIONG Shao-wu. Situation of combustion utilization of high sodium coal[J]. Proc CSEE, 2013,33(5):1-12.  

    4. [4]

      LIU Jia-li, SU Guo-qing, ZHANG Xiao-hong, YANG Zhong-can, YAO Wei. Evaluation method for ash fouling characteristics of coals with high alkali content[J]. Therm Power Gen, 2016(1):9-13.  

    5. [5]

      XU J Y, YU D X, FAN B, ZENG X P, LÜ W Z, CHEN J. Characterization of Ash Particles from Co-combustion with a Zhundong Coal for Understanding Ash Deposition Behavior[J]. Energy Fuels, 2014,28(1):678-684. doi: 10.1021/ef401545d

    6. [6]

      WANG Yang, LI Hui, WANG Dong-xu, DONG Chang-qing, LU Qiang, LI Wen-yan. Relationship between coal ash fusibility and ash composition in terms of mineral changes[J]. J Fuel Chem Technol, 2016,44(9):1034-1042.  

    7. [7]

      WANG Y, XIANG Y, WANG D X, DONG C Q, YANG Y P, XIAO X B, LU Q, ZHAO Y. Effect of Sodium Oxides in Ash Composition on Ash Fusibility[J]. Energy Fuels, 2016,30(2):1437-1444.  

    8. [8]

      SONG W J, TANG L H, ZHU X D, WU Y Q, ZHU Z B, KOYAMA S. Effect of Coal Ash Composition on Ash Fusion Temperatures[J]. Energy Fuels, 2009,24(1):182-189.

    9. [9]

      LIU B, HE Q H, JIANG Z H, XU R F, HU B X. Relationship between coal ash composition and ash fusion temperatures[J]. Fuel, 2013,105:293-300. doi: 10.1016/j.fuel.2012.06.046

    10. [10]

      KONG Ling-xue, BAI Jin, LI Wen, BAI Zong-qing, GUO Zhen-xing. Effect of lime addition on slag fluidity of coal ash[J]. J Fuel Chem Technol, 2011,39(6):407-412.  

    11. [11]

      CHEN Xiao-dong, KONG Ling-xue, BAI Jin, BAI Zong-qing, LI Wen. Effect of Na2O on mineral transformation of coal ash under high temperature gasification condition[J]. J Fuel Chem Technol, 2016,44(3):263-272.  

    12. [12]

      YAN T G, BAI J, KONG L X, BAI Z Q, LI W, XU J. Effect of SiO2/Al2O3 on fusion behavior of coal ash at high temperature[J]. Fuel, 2017,193:275-283. doi: 10.1016/j.fuel.2016.12.073

    13. [13]

      LI Rui-lian, DU Mei-fang, WU Xiao-jiang, XU Lu-xia, ZHANG Zhong-xiao. Effect of kaolin on the ash fusion characteristics of high alkali Zhundong coal:A quantum chemistry and experimental study[J]. J Fuel Chem Technol, 2016,44(5):513-520.  

    14. [14]

      CHEN Fan-min, WANG Jia-rui, ZHAO Bing, LI Xiao-jiang, QIN Tao. Effect of mineral form in coal on combustion characteristics and fusibility of coal ash[J]. J Fuel Chem Technol, 2015,43(1):27-33.  

    15. [15]

      VASSILEV S V, KITANO K, TAKEDA S, TSURUE T. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Process Technol, 1995,45(1):27-51. doi: 10.1016/0378-3820(95)00032-3

    16. [16]

      MA Yan, HUANG Zhen-yu, TANG Hui-ru, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Mineral conversion of Zhundong coal during ashing process and the effect of mineral additives on its ash fusion characteristics[J]. J Fuel Chem Technol, 2014,42(1):20-25.  

    17. [17]

      LI Fan, QIU Jian-rong, ZHENG Chu-guang. The effect of mineral matter in coal on the ash melting point with ternary phase diagram[J]. J Huazhong Univ Sci Technol, 1996,24(10):96-99.  

    18. [18]

      AKIYAMA K, PAK H, TAKUBO Y, TADA T, UEKI Y, YOSHⅡE R, NARUSE I. Ash deposition behavior of upgraded brown coal in pulverized coal combustion boiler[J]. Fuel Process Technol, 2011,92(7):1355-1361. doi: 10.1016/j.fuproc.2011.02.016

    19. [19]

      AKIYAMA K, PAK H, UEKI Y, YOSHⅡE R, NARUSE I. Effect of MgO addition to upgraded brown coal on ash-deposition behavior during combustion[J]. Fuel, 2011,90(11):3230-3236. doi: 10.1016/j.fuel.2011.06.041

  • 加载中
    1. [1]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    3. [3]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    4. [4]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    5. [5]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    6. [6]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    10. [10]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    12. [12]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    13. [13]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    14. [14]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    15. [15]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    16. [16]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    17. [17]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    18. [18]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

Metrics
  • PDF Downloads(6)
  • Abstract views(3033)
  • HTML views(848)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return