Citation: MA Xiu-wei, LI Feng-hai, MA Ming-jie, FANG Yi-tian. Fusion characteristics of blended ash from Changzhi coal and biomass[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(2): 129-137. shu

Fusion characteristics of blended ash from Changzhi coal and biomass

  • Corresponding author: LI Feng-hai, hzlfh@163.com
  • Received Date: 21 August 2017
    Revised Date: 11 December 2017

    Fund Project: Youth Natural Science Foundation of Shanxi Province Y5SJ1A1121the Natural Science Foundation of Shandong Province ZR2014BM014The project was supported by the Natural Science Foundation of Shandong Province(ZR2014BM014), Strategic Priority Research Program of the Chinese Academy of Sciences (XDA07050103) and Youth Natural Science Foundation of Shanxi Province (Y5SJ1A1121)Strategic Priority Research Program of the Chinese Academy of Sciences XDA07050103

Figures(5)

  • The blended ash fusion characteristics and its fusion mechanism of biomasses (peanut husk (PH) and rice husk (RH)) and Changzhi (CZ) coal with high melting point (MP) were investigated by ash fusion temperature (AFT) detector, X-ray fluorescence, X-ray diffraction, and FactSage software. The results show that the AFTs of CZ ash mixtures decrease with addition of biomass ash, and the fluxing effect of PH ash is better than that of RH ash, which mainly depends on their ash chemical compositions and elements existing form. The formations of low MP minerals anorthite, albite, and leucite are responsible for the decrease in AFT of PH and CZ mixtures. With RH ash addition, feldspar and eutectics are generated, resulting in a decrease in AFT of their mixtures. In the presence of Na2O, CaO, or K2O, SiO2 and Al2O3 would firstly react with them to form low MP aluminosilicate from the perspective of thermodynamic calculation, inhibiting formation of high MP mullite. The mixed ash fusion process could be divided into two major stages:fusion of K-and Ca-bearing minerals, respectively.
  • 加载中
    1. [1]

      DIMITRIADIS A, BEZERGIANNI S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production:A state of the art review[J]. Renewable Sustainable Energy Rev, 2017,68:113-125. doi: 10.1016/j.rser.2016.09.120

    2. [2]

      CAO Qin, HUANG Sheng, WU Shi-yong, WU You-qing, GAO Jin-sheng. Evolution behaviors of mineral matters in biomass under gasification conditions[J]. J Fuel Chem Technol, 2016,45(6):668-673.  

    3. [3]

      PACIONI T R, SOARES D, DOMENICO M D, ROSA M F, MOREIRA R D F P, JOSE H J. Bio-syngas production from agro-industrial biomass residues by steam gasification[J]. Waste Manage, 2016,58:221-229.  

    4. [4]

      YAO Kui, ZHANG Jin-gang, ZHU Huai-li, WANG Xing-jun, YU Guang-suo, LIU Hai-feng, WANG Fu-chen. Catalytic effect of biomass ash on the hydrogasification of coal char[J]. J Fuel Chem Technol, 2017,45(1):21-28.  

    5. [5]

      MASSOUDI F M, JEONG H J, HWANG J. Kinetic study on coal-biomass mixed char co-gasification with H2O in the presence of H2[J]. Fuel, 2016,181:1066-1073. doi: 10.1016/j.fuel.2016.04.130

    6. [6]

      LABBAFAN A, GHASSEMI H. Numerical modeling of an E-Gas entrained flow gasifier to characterize a high-ash coal gasification[J]. Energy Convers Manage, 2016,112:337-349. doi: 10.1016/j.enconman.2016.01.040

    7. [7]

      LIN Wen, ZHAO Jin-bo, LIANG Qin-feng, LIU Hai-feng, GONG Xin. Mechanism of slag blocking in slag chamber for shell coal gasifier[J]. Chem Eng, 2013,41(9):70-74.  

    8. [8]

      XU Rong-sheng, WANG yong-gang, LIN Xiong-chao, YANG Sa-sha, AI Sha-jiang, YANG Yuan-ping. Mineralogical properties of lowering coal ash melting temperature using blending coal and fluxing agent[J]. J Fuel Chem Technol, 2015,43(11):1303-1310. doi: 10.3969/j.issn.0253-2409.2015.11.004 

    9. [9]

      HAYKIRI-ACMA H, YAMAN S, KUCUKBAYRAK S, MORCALI M H. Does blending the ashes of chestnut shell and lignite create synergistic interaction on ash fusion temperatures?[J]. Fuel Process Technol, 2015,140:165-171. doi: 10.1016/j.fuproc.2015.09.005

    10. [10]

      FANG X, JIA L. Experimental study on ash fusion characteristics of biomass[J]. Bioresource Technol, 2012,104:769-774. doi: 10.1016/j.biortech.2011.11.055

    11. [11]

      CHEN X, TANG J, TIAN X, WANG L. Influence of biomass addition on Jincheng coal ash fusion temperatures[J]. Fuel, 2015,160:614-620. doi: 10.1016/j.fuel.2015.08.024

    12. [12]

      TANG Jian-ye, CHEN Xue-li, QIAO Zhi, LIU Ai-bin, WANG Fu-chen. Influence of agro-biomass addition on Changping coal ash melting characteristics[J]. CIESC J, 2014,65(12):4948-4957.  

    13. [13]

      VASSILEV S V, BAXTER D, ANDERSEN L K, VASSILEVA C G. An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification[J]. Fuel, 2015,105:40-76.  

    14. [14]

      XIAO Rui-rui, CHEN Xue-li, WANG Fu-chen, YU Guang-suo. The physicochemical properties of different biomass ash[J]. Acta Energ Sol Sin, 2011,32(3):364-369.  

    15. [15]

      CHEN Xiao-dong, KONG Ling-xue, BAI Jin, BAI Zong-qing, LI Wen. Effect of Na2O on mineral transformation of coal ash under high temperature gasification condition[J]. J Fuel Chem Technol, 2016,44(3):263-272.  

    16. [16]

      DU S, YANG H, QIAN K, WANG X, CHEN H. Fusion and transformation properties of the inorganic components in biomass ash[J]. Fuel, 2014,117:1281-1287. doi: 10.1016/j.fuel.2013.07.085

    17. [17]

      LI F, FAN H, FANG Y. Investigation on the regulation mechanism of ash fusion characteristics in coal blending[J]. Energy Fuels, 2017,31(1):379-386. doi: 10.1021/acs.energyfuels.6b02539

    18. [18]

      LU Y, WANG Y, XU Y, LI Y, HAO W, ZHANG Y. Investigation of ash fusion characteristics and migration of sodium during co-combustion of Zhundong coal and oil shale[J]. Appl Therm Eng, 2017,121:224-233. doi: 10.1016/j.applthermaleng.2017.04.062

    19. [19]

      IQBAL Y, LEWANDOWSKI I. Biomass composition and ash melting behaviour of selectedmiscanthus genotypes in southern germany[J]. Fuel, 2016,180:606-612. doi: 10.1016/j.fuel.2016.04.073

    20. [20]

      LU Tao, ZHANG Lei, ZHANG Ye, FENG Yun, LI Han-xu. Effect of mineral composition on coal ash fusion temperature[J]. J Fuel Chem Technol, 2010,38(1):23-28.  

    21. [21]

      LI F, MA X, XU M, FANG Y. Regulation of ash-fusion behaviors for high ash-fusion-temperature coal by coal blending[J]. Fuel Process Technol, 2017,166:131-139.  

    22. [22]

      LI F, XU M, WANG T, FANG Y, MA M. An investigation on the fusibility characteristics of low-rank coals and biomass mixtures[J]. Fuel, 2015,158:884-890. doi: 10.1016/j.fuel.2015.06.010

    23. [23]

      BAI Jin, KONG Ling-xue, LI Huai-zhu, GUO Zhen-xing, BAI Zong-qing, YU Chi-wei, LI wen. Adjustment in high temperature flow property of ash from Shanxi typical anthracite[J]. J Fuel Chem Technol, 2013,41(7):805-813.  

    24. [24]

      LI Zhen-zhu, LI Feng-hai, MA Xiu-wei, MA Ming-jie, XUE Zhao-min. Effect of biomass on ash fusion characteristics of Husheng lignite[J]. Chem Ind Eng Prog, 2015,34(3):710-714.  

    25. [25]

      TEIXEIRA P, LOPES H, GULYURTLU I, LAPA N, ABELHA P. Evaluation of slagging and fouling tendency during biomass co-firing with coal in a fluidized bed[J]. Biomass Bioenergy, 2012,39:192-203. doi: 10.1016/j.biombioe.2012.01.010

  • 加载中
    1. [1]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    2. [2]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    3. [3]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    4. [4]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    5. [5]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    6. [6]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    7. [7]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    8. [8]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    9. [9]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    10. [10]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    11. [11]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    12. [12]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    13. [13]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    14. [14]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    15. [15]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    16. [16]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    17. [17]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    18. [18]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

Metrics
  • PDF Downloads(5)
  • Abstract views(2775)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return