Citation: Fan Rong, Yang Zhibin, Bian Mianli, Liu Wukun. Progress in Antitumor Activity of Metal N-Heterocyclic Carbene Complexes[J]. Chemistry, ;2020, 83(4): 308-317. shu

Progress in Antitumor Activity of Metal N-Heterocyclic Carbene Complexes

Figures(5)

  • Since the successful development of cisplatin as a clinical anticancer drug in 1978, the development of metal complexes as small molecule anticancer drugs has become a research hotspot. Because of the formation of stable covalent bonds between N-heterocyclic carbene and various transition metal centers, metal N-heterocyclic carbene complexes have the potential to be developed into drugs. Recently, metal N-heterocyclic carbene complexes have been found to have good anticancer activities, which have stimulated the research enthusiasm of the majority of inorganic medicinal chemistry researchers. Based on our previous study of metal N-heterocyclic carbene complexes as antitumor agents, in this review, the antitumor activities and mechanisms of silver, gold, rhodium and platinum N-heterocyclic carbene complexes are summarized. We hope this review could provide a reference for the design and synthesis of metal N-heterocyclic carbene complexes as antitumor agents.
  • 加载中
    1. [1]

       

    2. [2]

      Jung Y, Lippard S J. Chem. Rev., 2007, 107(5):1387~1407. 

    3. [3]

       

    4. [4]

      Hindi K M, Panzner M J, Tessier C A, et al. Chem. Rev., 2009, 109(8):3859~3884. 

    5. [5]

      Wang Y T, Gao B B, Wang F, et al. Dalton. Transac., 2017, 46(6):1832~1839. 

    6. [6]

      Bao S J, Liu C Y, Zhang M, et al. Coord. Chem. Rev., 2019, 397:28~53. 

    7. [7]

      Huynh H V. Chem. Rev., 2018, 118(19):9457~9492. 

    8. [8]

      Melaiye A, Simons R S, Milsted A, et al. J. Med. Chem., 2004, 47(4):973~977. 

    9. [9]

      Medvetz D A, Hindi K M, Panzner M J, et al. Met.-Based Drugs, 2008, 2008:1~7.

    10. [10]

      Hackenberg F, Lally G, Müller-Bunz H, et al. J. Organomet. Chem., 2012, 717:123~134. 

    11. [11]

      Streciwilk W, Cassidy J, Hackenberg F, et al. J. Organomet. Chem., 2014, 749:88~99. 

    12. [12]

      Hackenberg F, Lally G, Müller-Bunz H, et al. Inorg. Chim. Acta, 2013, 395:135~144. 

    13. [13]

      Iduna F, Jindrich C, Martin M, et al. Lett. Drug Des. Discov., 2012, 9(9):815~822. 

    14. [14]

      Liu W, Bensdorf K, Hagenbach A, et al. Eur. J. Med. Chem., 2011, 46(12):5927~5934. 

    15. [15]

      Eloy L, Jarrousse A S, Teyssot M L, et al. ChemMedChem, 2012, 7(5):805~814. 

    16. [16]

      Li Y, Liu G F, Tan C P, et al. Metallomics, 2014, 6(8):1460~1468. 

    17. [17]

      Shruti K, Batakrishna J, Abhijit S, et al. Dalton Transac., 2014, 43(26):9838~9842. 

    18. [18]

      Citta A, Schuh E, Mohr F, et al. Metallomics, 2013, 5(8):1006~1015. 

    19. [19]

      Liang X, Luan S, Yin Z, et al. Eur. J. Med. Chem., 2018, 157:62~80. 

    20. [20]

      Benoît B, Angela C. Dalton Transac., 2014, 43(11):4209~4219. 

    21. [21]

      Wragg D, de Almeida A, Bonsignore R, et al. Angew. Chem. Int. Ed., 2018, 57(44):14524~14528. 

    22. [22]

      Porchia M, Pellei M, Marinelli M, et al. Eur. J. Med. Chem., 2018, 146:709~746. 

    23. [23]

      Madeira J M, Gibson D L, Kean W F, et al. Inflammopharmacology, 2012, 20(6):297~306. 

    24. [24]

      Warren F, Nakhle S, Min S, et al. Cancer Res., 2014, 74(9):2520~2532. 

    25. [25]

      Zhang B, Zhang J, Peng S, et al. Expert Opin. Ther. Pat., 2017, 27(5):547~556. 

    26. [26]

      Karaca O, Meier-Menches S M, Casini A, et al. Chem. Commun., 2017, 53(59):8249~8260. 

    27. [27]

      Holenya P, Can S, Rubbiani R, et al. Metallomics, 2014, 6(9):1591~1601. 

    28. [28]

      Bian M, Fan R, Zhao S, et al. J. Med. Chem., 2019, 62(16):7309~7321. 

    29. [29]

      Rubbiani R, Kitanovic I, Alborzinia H, et al. J. Med. Chem., 2010, 53(24):8608~8618. 

    30. [30]

      Zhang J, Zhang B, Li X, et al. Med. Res. Rev., 2017, 27(5):547~556.

    31. [31]

      Wedlock L E, Kilburn M R, Cliff J B, et al. Metallomics, 2011, 3(9):917~925. 

    32. [32]

      Wang H M J, Lin I J B. Organometallics, 1998, 17(5):972~975. 

    33. [33]

      Hickey J L, Ruhayel R A, Barnard P J, et al. J. Am. Chem. Soc., 2008, 130(38):12570~12571. 

    34. [34]

      Hickey J L, Ruhayel R A, Barnard P J, et al. J. Am. Chem. Soc., 2008, 130(38):12570~12571. 

    35. [35]

      Liu W, Bensdorf K, Proetto M, et al. J. Med. Chem., 2011, 54(24):8605~8615. 

    36. [36]

      Liu W, Bensdorf K, Proetto M, et al. J. Med. Chem., 2012, 55(8):3713~3724. 

    37. [37]

      Rubbiani R, Can S, Kitanovic I, et al. J. Med. Chem., 2011, 54(24):8646~8657. 

    38. [38]

      Meyer A, Oehninger L, Geldmacher Y, et al. ChemMedChem, 2014, 9(8):1794~1800.

    39. [39]

      Pratesi A, Gabbiani C, Michelucci E, et al. J. Inorg. Biochem., 2014, 136(7):161~169.

    40. [40]

      Lum C T, Sun R W, Zou T, et al. Chem. Sci., 2014, 5(4):1579~1584.

    41. [41]

      Fung S K, Zou T, Cao B, et al. Angew. Chem. Int. Ed., 2017, 56(14):3892~3896. 

    42. [42]

      McConnell J R, Rananaware D P, Ramsey D M, et al. Bioorg. Med. Chem. Lett., 2013, 23(9):2527~2531. 

    43. [43]

      Oehninger L, Küster L N, Schmidt C, et al. Chem. Eur. J., 2013, 19(52):17871~17880. 

    44. [44]

      Oehninger L, Spreckelmeyer S, Holenya P, et al. J. Med. Chem., 2015, 58(24):9591~9600. 

    45. [45]

      Streciwilk W, Terenzi A, Cheng X, et al. Eur. J. Med. Chem., 2018, 156:148~161. 

    46. [46]

      Fan R, Bian M, Hu L, et al. Eur. J. Med. Chem., 2019, 183:111721. 

    47. [47]

      Skander M, Retailleau P, Bourrié B, et al. J. Med. Chem., 2010, 53(5):2146~2154. 

    48. [48]

      Chtchigrovsky M, Eloy L, Jullien H, et al. J. Med. Chem., 2013, 56(5):2074~2086. 

    49. [49]

      Zhang J J, Che C M, Ott I. J. Organomet. Chem., 2015, 782:37~41. 

    50. [50]

      Li K, Zou T, Chen Y, et al. Chem. Eur. J., 2015, 21(20):7441~7453. 

    51. [51]

      Betzer J F, Nuter F, Chtchigrovsky M, et al. Bioconjug. Chem., 2016, 27(6):1456~1470. 

  • 加载中
    1. [1]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    2. [2]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    3. [3]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    4. [4]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    5. [5]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    6. [6]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    7. [7]

      Zimo Shen Tongwei Zhang Zhiyi Zhu Zonghao Gong Qing Feng Jinyi Yang Zhen Li Min Liu Wei Qi . From Alkaloid to Anticancer Agent: The Transformative Journey of Camptothecin. University Chemistry, 2025, 40(10): 161-165. doi: 10.12461/PKU.DXHX202411027

    8. [8]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    11. [11]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    12. [12]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    13. [13]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    14. [14]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    15. [15]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    16. [16]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    17. [17]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    18. [18]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    19. [19]

      Zhiming Feng Lili Wu Chengming Wang . Doubly Oxidized Carbene. University Chemistry, 2025, 40(9): 326-331. doi: 10.12461/PKU.DXHX202411008

    20. [20]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

Metrics
  • PDF Downloads(38)
  • Abstract views(1847)
  • HTML views(522)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return