Citation: GAO Xian-long, MO Wen-long, MA Feng-yun, CHEN Jun, CHEN Li. Effect of calcination temperature on the structure and properties of Raney-Ni catalyst for hydrogenation of 1, 4-butenediol[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(1): 108-119. shu

Effect of calcination temperature on the structure and properties of Raney-Ni catalyst for hydrogenation of 1, 4-butenediol

  • Corresponding author: MO Wen-long, mowenlong@xju.edu.cn MA Feng-yun, ma_fy@126.com
  • Received Date: 2 September 2019
    Revised Date: 27 October 2019

    Fund Project: The project was supported by Xinjiang Uygur Autonomous Region Key R & D Program (2017B02012), Xinjiang University Natural Science Foundation Project (BS160221)Xinjiang University Natural Science Foundation Project BS160221Xinjiang Uygur Autonomous Region Key R & D Program 2017B02012

Figures(14)

  • Ni-Al alloy powder was impregnated with copper nitrate solution, and calcined at different temperatures to obtain Cu-modified Ni-Al alloy powder. The modified alloy powder was leached with a 10% (mass ratio) NaOH solution to obtain the Cu/Raney-Ni catalyst. Elemental composition, crystal structure, pore structure, surface morphology and surface acidity of the Ni-Al alloy powder and corresponding Raney-Ni catalysts were characterized by EDX, XRD, N2 adsorption-desorption, TEM and NH3-TPD. The hydrogenation performance of the Raney-Ni catalysts were evaluated using the reaction of 1, 4-butenediol (BED) hydrogenation to 1, 4-butanediol (BDO) as the probe reaction. The characteristic results showed that the CRT500 catalyst prepared at the calcination temperature of 500 ℃ presented larger specific surface area of 64.96 m2/g, and the proportion of weak acid sites was high of 81.2%. The reaction results proposed that the reactant of BED could be completely converted, and the selectivity and yield of BDO increased firstly and then decreased as the calcination temperature increased. The CRT500 catalyst presented good hydrogenation performance, with BED conversion of 100.00%, BDO selectivity of 61.88%, while the BDO selectivity of the RCT550 and RCT600 were lower, which might be due to the agglomeration or sintering of the catalyst at higher calcination temperature. The CRT500 catalyst showed excellent hydrogenation performance, which might be attributed to the appropriate molar ratio of Ni/Al (3.84), the large proportion of weak acid sites and good dispersion of active component Ni.
  • 加载中
    1. [1]

      WANG J, JAIN R C, SHEN X L, CHENG M Y, JAMES C L, YUAN Q P, YAN Y J. Rational engineering of diol dehydratase enables 1, 4-butanediol biosynthesis from xylose[J]. Metab Eng, 2017,40:148-156. doi: 10.1016/j.ymben.2017.02.003

    2. [2]

      DEMATTEIS M, PENNEL L, MALLARET M. Current knowledge on gamma-hydroxybutyric acid (GHB), gamma-butyrolactone (GBL) and 1, 4-butanediol (1, 4-BD)[J]. Rev Prat, 2012,62(5):669-672.  

    3. [3]

      PYATNITSYNA E V, EL'CHANINOV I M, EL'CHANINOV M M. Chemical method for removal of impurities impairing the quality of commercial 1, 4-butanediol produced by the reppe method[J]. Russ J Appl Chem, 2014,87(1):104-107. doi: 10.1134/S1070427214010157

    4. [4]

      MO Wen-long, ZHENG Shuang, MA Ya-ya, MA Feng-yun, AISHA·Nu-la-hong , XI Long-fei. Influence of preparation methods on the performance of Ni-Al2O3 catalyst for hydrogenation of 1, 4-butynediol[J]. Acta Pet Sin (Pet Process Sect), 2019,35(2):252-260. doi: 10.3969/j.issn.1001-8719.2019.02.005

    5. [5]

      LI H T, XU Y L, GAO C G, WANG Y Z. Structural and textural evolution of Ni/γ-Al2O3 catalyst under hydrothermal conditions[J]. Catal Today, 2010,158:475-480. doi: 10.1016/j.cattod.2010.07.015

    6. [6]

      LI H T, ZHAO Y X, GAO C G, WANG Y Z, SUN Z J, LIANG X Y. Study on deactivation of Ni/Al2O3 catalyst for liquid phase hydrogenation of crude 1, 4-butanediol aqueous solution[J]. Chem Eng J, 2012,181(1):501-507.  

    7. [7]

      ANANDA S A, YEN M L, ANTHONY D F, TONY L G, BERNARD W. Conversion of levulinic acid and cellulose to γ-valerolactone over Raney-Ni catalyst using formic acid as a hydrogen donor[J]. Biofuels, 2018,47(11):1-5.

    8. [8]

      BENDOVA D H, WEIDLICH D T. Application of diffusion dialysis in hydrometallurgical separation of nickel from spent Raney Ni catalyst[J]. Sep Sci Technol, 2017,53(9):1-5.  

    9. [9]

      LUO G H, WANG Y L, SUN D M, XU X, JIN H B. Effect of preparation process on compressive strength and hydrogenation performance of Raney-Ni/Al2O3 catalyst[J]. China Pet Process Petrochem Technol, 2017,19(2):14-20.  

    10. [10]

      LEI H, ZHEN S, TAN D L, BAO X H, MU X H, ZONG B N, MIN E Z. Preparation of novel raney-Ni catalysts and characterization by XRD, SEM and XPS[J]. Appl Catal A:Gen, 2001,214(1):69-76. doi: 10.1016/S0926-860X(01)00481-1

    11. [11]

      LEI Hao. Study on hydrogenation characteristics of rapidly solidified Ni-Al alloy structure and derived framework Ni catalyst[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2003. 

    12. [12]

      SUN Jiao, REN Guo-qing, HUANG Yu-hui, CHEN Xiao-rong, MEI Hua. Effect of calcination temperature on the catalytic performance of CuMgAl catalysts for furfural gas phase selective hydrogenation to furfuryl alcohol[J]. J Fuel Chem Technol, 2017,45(1):78-85.  

    13. [13]

      YUAN P, LIU Z Y, SUN H J, LIU S C. Influence of calcination temperature on the performance of Cu-Al-Ba catalyst for hydrogenation of esters to alcohols[J]. Acta Phys Sin, 2010,26(8):2235-2241.  

    14. [14]

      DENG Hong, WEI Teng-you, TONG Zhang-fa. Preparation of catalyst for morpholine synthesis by ultrasonic irradiation impregnation method and its catalytic behaviors[J]. Chem Ind Eng Prog, 2015,34(2):425-446.  

    15. [15]

      LIU Z X, WANG Y H, LI J R, ZHANG R G. The effect of γ-Al2O3 surface hydroxylation on the stability and nucleation of Ni in Ni/γ-A2O3 catalyst:A theoretical study[J]. Rsc Adv, 2014,4(26):13280-13292. doi: 10.1039/c3ra46352d

    16. [16]

      LEI H, SONG Z, BAO X H, MU X H. XRD and XPS studies on the ultra-uniform Raney-Ni catalyst prepared from the melt-quenching alloy[J]. Surf Interface Anal, 2010,32(1):210-213.  

    17. [17]

      MEDGYES B. Electrochemical migration of Ni and ENIG surface finish during environmental test contaminated by NaCl[J]. J Mater Sci Mater Electron, 2017,28(24):1-7.  

    18. [18]

      WANG A L, YIN H B, LU H H, XUE J J, REN M, JIANG T S. Effect of organic modifiers on the structure of nickel nanoparticles and catalytic activity in the hydrogenation of p-nitrophenol to p-aminophenol[J]. ACS J Surfaces Colloid, 2009,25(21):12736-12741. doi: 10.1021/la901815b

    19. [19]

      ATUL B, BRUNO T, PHILIPP R V R, ATSUSHI U. Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure[J]. Catal Sci Technol, 2013,3(3):767-778. doi: 10.1039/C2CY20604H

    20. [20]

      BERND H, MATTHIAS H, LOUIS A C, RANDALL Q S. Characterization of acidic OH groups in zeolites of different types:An Interpretation of NH3-TPD results in the Light of confinement effects[J]. J Phys Chem, 2016,106(15):21-36.  

    21. [21]

      BAGNASCO G, BENEˇS L, GALLI P, MASSUCCI M, PATRONO P, TURCO M, ZIMA V. TG/DTA, XRD and NH3-TPD characterization of layered VOPO4·2H2O and its Fe3+-substituted compound[J]. J Therm Anal Calor, 1998,52(2):615-630. doi: 10.1023/A:1010136126445

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    13. [13]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    14. [14]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(12)
  • Abstract views(2927)
  • HTML views(332)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return