Synthesis of N, P-doped C@Mo2C catalyst and its application in CO2 hydrogenation
- Corresponding author: XIAO Lin-fei, xiaolf@hlju.edu.cn WU Wei, wuwei@hlju.edu.cn
Citation:
GENG Wen-hao, LIU Fei, Han HAN, XIAO Lin-fei, WU Wei. Synthesis of N, P-doped C@Mo2C catalyst and its application in CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(4): 458-467.
KUNKEL C, VIÑES F, ILLAS F. Transition metal carbides as novel materials for CO2 capture, storage, and activation[J]. Energy Environ Sci, 2016,9(1):141-144. doi: 10.1039/C5EE03649F
ZHU Yi-qing, WEN Yi, LAI Li-fang, ZONG Feng-qi, WANG Jian. Characterization and catalytic activity evaluation of ultrafine Cu/ZnO/TiO2-SiO2 catalysts for CO2 hydrogenation to methanol[J]. J Fuel Chem Technol, 2004,32(4):486-491.
LIU Chang-jun, GUO Qiu-ting, YE Jing-yun, SUN Kai-hang, FAN Zhi-gang, GE Qing-feng. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC J, 2016,67(1):6-13.
ZHUANG Hui-dong, BAI Shao-fen, LIU Xin-mei, YAN Zi-feng. Structure and performance of Cu/ZrO2 catalyst for the synthesis of methanol from CO2 hydrogenation[J]. J Fuel Chem Technol, 2010,38(4):462-467. doi: 10.1016/S1872-5813(10)60041-2
WANG W, WANG S P, MA X B, GONG J L. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chem Soc Rev, 2011,40(7):3703-3727. doi: 10.1039/c1cs15008a
LIU X M, LU G Q, YAN Z F, BELTRAMINI J. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2[J]. Ind Eng Chem Res, 2003,42(25):6518-6530. doi: 10.1021/ie020979s
POROSOFF M D, YAN B H, CHEN J G G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons:Challenges and opportunities[J]. Energy Environ Sci, 2016,9(1):62-73. doi: 10.1039/C5EE02657A
JADHAV S G, VAIDYA P D, BHANAGE B M, JOSHI J B. Catalytic carbon dioxide hydrogenation to methanol:A review of recent studies[J]. Chem Eng Res Des, 2014,92(11):2557-2567. doi: 10.1016/j.cherd.2014.03.005
GUO X M, MAO D S, LU G Z, WANG S, WU G S. The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation[J]. J Mol Catal A:Chem, 2011,345(1/2):60-68.
HARTADI Y, WIDMANN D, BEHM R J. Methanol formation by CO2 hydrogenation on Au/ZnO catalysts-effect of total pressure and influence of CO on the reaction characteristics[J]. J Catal, 2016,333:238-250. doi: 10.1016/j.jcat.2015.11.002
JIANG X, KOIZUMI N, GUO X W, SONG C S. Bimetallic Pd-Cu catalysts for selective CO2 hydrogenation to methanol[J]. Appl Catal B:Environ, 2015,170-171:173-185. doi: 10.1016/j.apcatb.2015.01.010
WANG J J, LU S M, LI J, LI C. A remarkable difference in CO2 hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes[J]. Chem Commun, 2015,51(99):17615-17618. doi: 10.1039/C5CC07079A
XU W Q, RAMÍREZ P J, STACCHIOLA D, BRITO J L, RODRIGUEZ J A. The carburization of transition metal molybdates (MxMoO4, M=Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO2hydrogenation[J]. Catal Lett, 2015,145(7):1365-1373. doi: 10.1007/s10562-015-1540-5
LIU X R, SONG Y Q, GENG W H, LI H N, XIAO L F, WU W. Cu-Mo2C/MCM-41:An efficient catalyst for the selective synthesis of methanol from CO2[J]. Catal, 2016,6(5)75. doi: 10.3390/catal6050075
POSADA-PÉREZ S, RAMÍREZ P J, GUTIÉRREZ R A, STACCHIOLA D J, VIÑES F, LIU P, ILLAS F, RODRIGUEZ J A. The conversion of CO2 to methanol on orthorhombic β-Mo2C and Cu/β-Mo2C catalysts:Mechanism for admetal induced change in the selectivity and activity[J]. Catal Sci Technol, 2016,6(18):6766-6777. doi: 10.1039/C5CY02143J
POSADA-PÉREZ S, VIÑES F, RAMIREZP J, VIDAL A B, RODRIGUEZ J A, ILLAS F. The bending machine:CO2 activation and hydrogenation on δ-MoC (001) and β-Mo2C (001) surfaces[J]. Phy Chem Chem Phys, 2014,16(28):14912-14921. doi: 10.1039/c4cp01943a
PARAKNOWITSCH J P, ZHANG J, SU D S, THOMAS A, ANTONIETTI M. Ionic liquids as precursors for nitrogen-doped graphitic carbon[J]. Adv Mater, 2010,22(1):87-92. doi: 10.1002/adma.v22:1
ZHANG S G, DOKKO K, WATANABE M. Direct synthesis of nitrogen-doped carbon materials from protic ionic liquids and protic salts:Structural and physicochemical correlations between precursor and carbon[J]. Chem Mater, 2014,26(9):2915-2926. doi: 10.1021/cm5006168
ZHANG S G, MANDAI T, UENO K, DOKKO K, WATANABE M. Hydrogen-bonding supramolecular protic salt as an "all-in-one" precursor for nitrogen-doped mesoporous carbons for CO2 adsorption[J]. Nano Energy, 2015,13:376-386. doi: 10.1016/j.nanoen.2015.03.006
YANG D S, BHATTACHARJYA D, INAMDAR S, PARK J, YU J S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. J Am Chem Soc, 2012,134(39):16127-16130. doi: 10.1021/ja306376s
ZHAO Hua, ZHUO Zhi-hua, YU Shai-cheng, HUANG Fei-fei. Study on synthesis and modification of melamine phosphate[J]. Chin Plast Ind, 2009,37(1):60-62.
ZHANG Xiu-lian. Hydrogen-bonded self-assembly of melamine with organic acid[D]. Guangzhou:Sun Yat-sen University, 2005.
MA F X, WU H B, XIA B Y, XU C Y, LOU X W. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production[J]. Angew Chem Int Ed, 2015,54(51):15395-15399. doi: 10.1002/anie.201508715
LIU C C, LIN M G, JIANG D, FANG K G, SUN Y H. Preparation of promoted molybdenum carbides nanowire for CO hydrogenation[J]. Catal Lett, 2014,144(4):567-573. doi: 10.1007/s10562-013-1163-7
SHI Z P, WANG Y X, LIN H L, ZHANG H B, SHEN M K, XIE S H, ZHANG Y H, GAO Q S, TANG Y. Porous nano MoC@graphite shell derived from a MOFs-directed strategy:An efficient electrocatalyst for the hydrogen evolution reaction[J]. J Mater Chem A, 2016,4(16):6006-6013. doi: 10.1039/C6TA01900E
MA Y F, GUAN G Q, HAO X G, ZUO Z J, HUANG W, PHANTHONG P, KUSAKABE K, ABUDULA A. Highly-efficient steam reforming of methanol over copper modified molybdenum carbide[J]. RSC Adv, 2014,4(83):44175-44184. doi: 10.1039/C4RA05673F
ZHAO Y, KAMIYA K, HASHIMOTO K, NAKANISHI S. In situ CO2 emission assisted synthesis of molybdenum carbonitride nanomaterial as hydrogen evolution electrocatalyst[J]. J Am Chem Soc, 2015,137(1):110-113. doi: 10.1021/ja5114529
WANG H Y, LIU S D, SMITH K J. Synthesis and hydrodeoxygenation activity of carbon supported molybdenum carbide and oxycarbide catalysts[J]. Energy Fuels, 2016,30(7):6039-6049. doi: 10.1021/acs.energyfuels.6b01032
CHEN Y Y, ZHANG Y, JIANG W J, ZHANG X, DAI Z H, WAN L J, HU J S. Pomegranate-like N, P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution[J]. ACS Nano, 2016,10(9):8851-8860. doi: 10.1021/acsnano.6b04725
YU Zheng-fa, WANG Xu-zhen, LIU Ning, LIU Yang. Recent progress of N-doped porous carbon materials[J]. Chem Ind Eng Prog, 2013,32(4):824-831.
POROSOFF M D, YANG X, BOSCOBOINIK J A, CHEN J G. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO[J]. Angew Chem In Ed, 2014,53(26):6705-6709. doi: 10.1002/anie.201404109
YANG S L, PENG L, HUANG P P, WANG X S, SUN Y B, CAO C Y, SONG W G. Nitrogen, phosphorus, and sulfur co-doped hollow carbon shell as superior metal-free catalyst for selective oxidation of aromatic alkanes[J]. Angew Chem Int Ed, 2016,55(12):4016-4020. doi: 10.1002/anie.201600455
LEE Y K, OYAMA S T. Bifunctional nature of a SiO2-supported Ni2P catalyst for hydrotreating:EXAFS and FTIR studies[J]. J Catal, 2006,239(2):376-389. doi: 10.1016/j.jcat.2005.12.029
ZHOU X H, SU T M, JIANG Y X, QIN Z Z, JI H B, GUO Z H. CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis[J]. Chem Eng Sci, 2016,153:10-20. doi: 10.1016/j.ces.2016.07.007
ELAMIN M M, MURAZA O, MALAIBARI Z, BA H, NHUT J M, PHAM-HUU C. Microwave assisted growth of SAPO-34 on β-SiC foams for methanol dehydration to dimethyl ether[J]. Chem Eng J, 2015,274:113-122. doi: 10.1016/j.cej.2015.03.118
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
Huirong Chen , Yingzhi He , Yan Han , Jianbo Hu , Jiantang Li , Yunjia Jiang , Basem Keshta , Lingyao Wang , Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Yi Liu , Zhe-Hao Wang , Guan-Hua Xue , Lin Chen , Li-Hua Yuan , Yi-Wen Li , Da-Gang Yu , Jian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Yang Li , Yanan Dong , Zhihong Wei , Changzeng Yan , Zhen Li , Lin He , Yuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206
Fahui Xiang , Lu Li , Zhen Yuan , Wuji Wei , Xiaoqing Zheng , Shimin Chen , Yisi Yang , Liangji Chen , Zizhu Yao , Jianwei Fu , Zhangjing Zhang , Shengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193