Citation: NING Qiang, LIU Su-yao, ZHANG Huai-ke, CHEN Zhi-qiang, REN Jie. Effect of metal precursor solvent on n-dodecane isomerization of Pt/ZSM-22[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(12): 1454-1461. shu

Effect of metal precursor solvent on n-dodecane isomerization of Pt/ZSM-22

  • Corresponding author: REN Jie, renjie@sxicc.ac.cn
  • Received Date: 19 September 2018
    Revised Date: 16 October 2018

Figures(5)

  • A series of Pt/ZSM-22 bifunctional catalysts were prepared by using different metal precursor solvents including water, methanol, acetone and acetic acid. The phase structure, texture properties, metal properties and acidity were systematically investigated by XRD, BET, TEM, CO-chemisorption, CO-FTIR and Py-FTIR. The effect of metal precursor solvents on n-dodecane isomerization was also studied. The results indicate that the solvents with different polarities lead to different locations of Pt particles. Part of Pt particles locate on ZSM-22 when methanol, acetone and acetic acid are used as solvents, and the interaction between Pt and acid sites lead to the electron-deficient of Pt. However, the Pt particles almost locate on the Al2O3 binders when water is used as solvent, and their electronic properties are little affected. Higher activity and selectivity are achieved when Pt particles locate on ZSM-22 in the n-dodecane isomerization reactions. These results indicate that shorten the distance between acid sites and metal sites can expedite the diffusion of reactants and isomerized intermediates to proceed dehydrogenation and hydrogenation reactions.
  • 加载中
    1. [1]

      REN Jie, ZHANG Huai-ke, LI Yong-wang. Research progress of the processing technology for Fischer-Tropsch syncrude[J]. J Fuel Chem Technol, 2009,37(6):769-776. doi: 10.3969/j.issn.0253-2409.2009.06.023

    2. [2]

      BOUCHY C, HASTOY G, GUILLON E, MARTENS J A. Fischer-Tropsch waxes upgrading via hydrocracking and selective hydroisomerization[J]. Oil Gas Sci Technol, 2009,64(64):91-112.  

    3. [3]

      WANG Hong-hao, LIU Su-yao, ZHANG Huai-ke, GUO Da-guang, MA Jun, REN Jie, WANG Hai-yan. Synthesis and characterization of ZSM-22 zeolites and their catalytic performance in alkylation reaction[J]. J Fuel Chem Technol, 2016,44(8):1010-1016. doi: 10.3969/j.issn.0253-2409.2016.08.016 

    4. [4]

      LIU S, REN J, ZHANG H, LV E, YANG Y, LI Y W. Synthesis, characterization and isomerization performance of micro/mesoporous materials based on H-ZSM-22 zeolite[J]. J Catal, 2016,335:11-23. doi: 10.1016/j.jcat.2015.12.009

    5. [5]

      LIU S, REN J, ZHU S, ZHANG H, LV E, XU J, LI Y W. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance[J]. J Catal, 2015,330:485-496. doi: 10.1016/j.jcat.2015.07.027

    6. [6]

      ZEČEVIĆ J, VANBUTSELE G, DE JONG K P, MARTENS J A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons[J]. Nature, 2015,528(7581):245-248. doi: 10.1038/nature16173

    7. [7]

      FRANCIS J, GUILLON E, BATS N, PICHON C, CORMA A, SIMON L J. Design of improved hydrocracking catalysts by increasing the proximity between acid and metallic sites[J]. Appl Catal A:Gen, 2011,409(23):140-147.  

    8. [8]

      KIM J, KIM W, SEO Y, KIM J C, RYOO R. n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets:Effects of zeolite crystal thickness and platinum location[J]. J Catal, 2013,301(5):187-197.  

    9. [9]

      WEISZ P B. Polyfunctional heterogeneous catalysis[J]. Adv Catal, 1962,13:137-190.  

    10. [10]

      SAMAD J E, BLANCHARD J, SAYAG C, LOUIS C, REGALBUTO J R. The controlled synthesis of metal-acid bifunctional catalysts:The effect of metal:Acid ratio and metal-acid proximity in Pt silica-alumina catalysts for n-heptane isomerization[J]. J Catal, 2016,342:203-212. doi: 10.1016/j.jcat.2016.08.004

    11. [11]

      BATALHA N, PINARD L, BOUCHY C, GUILLON E, GUISNET M. n-Hexadecane hydroisomerization over Pt-HBEA catalysts. Quantification and effect of the intimacy between metal and protonic sites[J]. J Catal, 2013,307(6):122-131.  

    12. [12]

      MILLER J T, SCHREIER M, KROPF A J, REGALBUTO J R. A fundamental study of platinum tetraammine impregnation of silica:2. The effect of method of preparation, loading, and calcination temperature on (reduced) particle size[J]. J Catal, 2004,225(1):190-202. doi: 10.1016/j.jcat.2004.03.034

    13. [13]

      CHEN Z, LIU S, WANG H, NING Q, ZHANG H, YUN Y, REN J, LI Y W. Synthesis and characterization of bundle-shaped ZSM-22 zeolite via the oriented fusion of nanorods and its enhanced isomerization performance[J]. J Catal, 2018,361:177-185. doi: 10.1016/j.jcat.2018.02.019

    14. [14]

      TREACY M M J, PRINCETON N J. Collection of simulated XRD powder patterns for zeolites[J]. Appl Catal, 1986,21(2):388-389.  

    15. [15]

      ARISTIZÁBAL A, CONTRERAS S, DIVINS N J, LLORCA J, MEDINA F. Pt-Ag/activated carbon catalysts for water denitration in a continuous reactor:Incidence of the metal loading, Pt/Ag atomic ratio and Pt metal precursor[J]. Appl Catal B:Environ, 2012,127:351-362. doi: 10.1016/j.apcatb.2012.08.039

    16. [16]

      YANG Chun-yan, YANG Wei-ping, LING Feng-xiang, FAN Feng. Determination of metal dispersion on supported metal catalyst surface[J]. Chem Ind Eng Prog, 2010,29(8):1468-1473.  

    17. [17]

      WANG Y, TAO Z, WU B, XU J, HUO C, LI K, CHEN H, YANG Y, LI Y. Effect of metal precursors on the performance of Pt/ZSM-22 catalysts for n-hexadecane hydroisomerization[J]. J Catal, 2015,322:1-13. doi: 10.1016/j.jcat.2014.11.004

    18. [18]

      XU D, WU B, REN P, WANG S, HUO C, ZHANG B, GUO W, HUANG L, WEN X, QIN Y, YANG Y, LI Y. Controllable deposition of Pt nanoparticles into a KL zeolite by atomic layer deposition for highly efficient reforming of n-heptane to aromatics[J]. Catal Sci Technol, 2017,7(6):1342-1350. doi: 10.1039/C6CY02652D

    19. [19]

      HAN W J, KOOH A B, HICKS R F. Infrared spectroscopy of carbon monoxide adsorbed on Pt/L zeolite[J]. Catal Lett, 1993,18(3):193-208. doi: 10.1007/BF00769438

    20. [20]

      JACOBS G, GHADIALI F, PISANU A, PADRO C L, BORGNA A, ALVAREZ W E, RESASCO D E. Increased sulfur tolerance of Pt/KL catalysts prepared by vapor-phase impregnation and containing a Tm promoter[J]. J Catal, 2000,191(1):116-127. doi: 10.1006/jcat.1999.2779

    21. [21]

      MENACHERRY P V, HALLER G L. Electronic effects and effects of particle morphology in n-hexane conversion over zeolite-supported platinum catalysts[J]. J Catal, 1998,177(2):175-188. doi: 10.1006/jcat.1998.2048

    22. [22]

      FUKASE S, KUMAGAI H, SUZUKA T. Catalytic behavior of platinum ion-exchanged zinc-aluminosilicates in n-pentane aromatization[J]. Appl Catal A:Gen, 1992,93(1):35-45. doi: 10.1016/0926-860X(92)80292-K

    23. [23]

      NODA T, SUZUKI K, KATADA N, NIWA M. Combined study of IRMS-TPD measurement and DFT calculation on Brφnsted acidity and catalytic cracking activity of cation-exchanged Y zeolites[J]. J Catal, 2008,259(2):203-210. doi: 10.1016/j.jcat.2008.08.004

    24. [24]

      NAVARRO R M, PAWELEC B, TREJO J M, MARISCAL R, FIERRO J L G. Hydrogenation of aromatics on sulfur-resistant PtPd bimetallic catalysts[J]. J Catal, 2000,189(1):184-194. doi: 10.1006/jcat.1999.2693

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    3. [3]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    4. [4]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    5. [5]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    6. [6]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    8. [8]

      Zhi FANGLiang SUNMingze ZHENGWenhao SHENGHongliang HUANGChongli ZHONG . An aluminum-based metal-organic framework with slit pores for the efficient separation and recovery of electronic specialty gas C3F8. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2054-2062. doi: 10.11862/CJIC.20250096

    9. [9]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    10. [10]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    11. [11]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    12. [12]

      Ruiyun LiuPing WangXuefei WangFeng ChenHuogen Yu . Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100137-0. doi: 10.1016/j.actphy.2025.100137

    13. [13]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    14. [14]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    15. [15]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    18. [18]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    19. [19]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    20. [20]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

Metrics
  • PDF Downloads(8)
  • Abstract views(1471)
  • HTML views(261)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return