Citation: ZHAO Ke, NIU Qing-xin, WANG Li, ZHANG Hua-wei. Effect of water vapor and α-Fe2O3 on elemental mercury removal performance over cerium oxide modified semi coke[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 378-384. shu

Effect of water vapor and α-Fe2O3 on elemental mercury removal performance over cerium oxide modified semi coke

  • Corresponding author: ZHANG Hua-wei, sdkdzhw@163.com
  • Received Date: 13 December 2016
    Revised Date: 10 January 2017

    Fund Project: the Natural Science Foundation of China 21276146the Natural Science Foundation of China 51406107Shandong Fund for Distinguished Young Scholars JQ201612

Figures(11)

  • Cerium modified semi coke adsorbent (Ce/SC) was prepared by impregnation method and a bench-scale fixed bed reactor was used to study the effect of H2O vapor and α-Fe2O3 on elemental mercury removal efficiency over Ce/SC. Characterizations of X-ray powder diffraction (XRD), Hydrogen temperature programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS) were conducted to investigate the mechanism of elemental mercury removal.The adsorption results showed that H2O had a negative effect on the oxidation activity of the adsorbent. H2O can be dissociated on the surface of CeO2 with partial lattice oxygen transformation into Ce-OH functional groups which led to the decrease of its oxidation activity and thus resulted in the inhibitory effect of mercury removal efficiency. The addition of α-Fe2O3 had no significant effect on mercury removal over Ce/SC. The mercury removal efficiency of Ce/SC was decreased when the water vapor and α-Fe2O3 existed simultaneously. However, the decrease rate was much lower than that of water vapor conditions alone mainly due to the interaction between water vapor and α-Fe2O3 increased the content of the surface chemical adsorbed oxygen and thus the oxidation activity and elemental mercury removal performance of Fe2O3were promoted.
  • 加载中
    1. [1]

      SHEWCHUK S R, AZARGOHAR R, DALAIA K. Elemental mercury capture using activated carbon:A review[J]. J Environ Anal Toxicol, 2016,6(4):1-10.

    2. [2]

      XU H, SHEN B X, YUAN P, LU F J, TIAN L H, ZHANG X. The adsorption mechanism of elemental mercury by HNO3-modified bamboo char[J]. Fuel Process Technol, 2016,154:139-146. doi: 10.1016/j.fuproc.2016.08.025

    3. [3]

      XU Y, ZHONG Q, LIU X. Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature[J]. J Hazard Mater, 2015,283:252-259. doi: 10.1016/j.jhazmat.2014.09.034

    4. [4]

      LI Min, WANG Li, CHEN Jiang-yan, JANG Yan-ling, WANG Wen-jun. Adsorption performance and mechanism of bentonite modified by ammonium bromide for gas-phase elemental mercury removal[J]. J Fuel Chem Technol, 2014,42(10):1266-1272. doi: 10.1016/S1872-5813(14)60049-9 

    5. [5]

      HE J F, DUAN C L, LEI M Z, ZHU X M. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology[J]. Environ Technol, 2016,37(1):1-41. doi: 10.1080/09593330.2015.1058860

    6. [6]

      JIANG G B, SHI J B, FENG X B. Mercury pollution in China[J]. Environ Sci Technol, 2006,40(12):3672-3678. doi: 10.1021/es062707c

    7. [7]

      ZHOU R, CAO Y, YAN S R, FANK N. Rare earth (Y, La, Ce)-promoted V-HMS mesoporous catalysts for oxidative dehydrogenation of propane[J]. Appl Catal A:Gen, 2002,236:103-111. doi: 10.1016/S0926-860X(02)00281-8

    8. [8]

      REDDY B M, KHAN A. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPStechniques[J]. J Phys Chem B, 2003,107(22):5162-5167. doi: 10.1021/jp0344601

    9. [9]

      LI H L, WU C Y, LI Y, ZHANG J Y. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environ Scitechnol, 2011,45(17):7394-7400. doi: 10.1021/es2007808

    10. [10]

      HE C, SHEN B X, CHEN J H, CAI J. Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs[J]. Environ Sci Technol, 2014,48(14):7891-7898. doi: 10.1021/es5007719

    11. [11]

      SCALA F, CIMINO S. Elemental mercury capture and oxidation by a regenerablemanganese-based sorbent:The effect of gas composition[J]. Chem Eng J, 2015,278:134-139. doi: 10.1016/j.cej.2014.11.094

    12. [12]

      WANG F M, LI G L, SHEN B X, WANG Y Y, HE C. Mercury removal over the vanadia-titania catalyst in CO2-enriched conditions[J]. Chem Eng J, 2015,263:356-363. doi: 10.1016/j.cej.2014.10.091

    13. [13]

      SHEN B X, CHEN J H, YUE S Y. Removal of elemental mercury by titanium pillared clay impregnated with potassium iodine[J]. Microporous Mesoporous Mater, 2015,203:216-223. doi: 10.1016/j.micromeso.2014.10.030

    14. [14]

      MA J F, LI C T, ZHAO L K, ZHANG J, SONG J Y, ZENG G M, ZHANG X, XIE Y. Study on removal of elemental mercury from simulated flue gas over activated coke treated by acid[J]. Appl Surf Sci, 2015,329:292-300. doi: 10.1016/j.apsusc.2014.11.090

    15. [15]

      WEN X Y, LI C T, FAN X P, GAO H L, ZHANG W, CHEN L, ZENG G M, ZHAO Y P. Experimental study of gaseous elemental mercury removal with CeO2/γ-Al2O3[J]. Energy Fuels, 2011,25(7):2939-2944. doi: 10.1021/ef200144j

    16. [16]

      HOU W H, ZHOU J S, YOU S L, GAO X, LUO Z Y. Elemental mercury capture from syngas by novel high-temperature sorbent based on Pd-Ce binary metal oxides[J]. Ind Eng Chem Res, 2015,54(14):3678-3684. doi: 10.1021/ie504447j

    17. [17]

      TAO S S, LI C T, FAN X P, ZENG G M, LU P, ZHANG X, WEN Q B, ZHAO W W, LUO D Q, FAN C Z. Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas[J]. Chem Eng J, 2012,210:547-556. doi: 10.1016/j.cej.2012.09.028

    18. [18]

      LI Zhi-chao, DUAN Yu-feng, WANG Yun-jun, HUANG Zhi-jun, MENG Su-li, SHEN Jie-zhong. Mercury removal by ESP and WFGD in a 300 MW coal-fired power plant[J]. J Fuel Chem Technol, 2013,41(4):491-498.  

    19. [19]

      ZHOU Jin-song, ZHANG Yi, HOU Wen-hui, QI Pan, GAO Xiang, LUO Zhong-yang. Elemental mercury removal by iron oxide adsorbent in coal derived fuel gas[J]. J Combust Sci Technol, 2013,19(4):287-292.  

    20. [20]

      GHORISHI S B, CHUN W L, WOJCIECH S J, JAMS D K. Effects of fly ash transition metal content and flue gas HCl/SO2ratio on mercury speciation in waste combustion[J]. Environ Eng Sci, 2005,22(2):221-231. doi: 10.1089/ees.2005.22.221

    21. [21]

      KEVIN C G, CHRISTOPEHR J Z, JAMES E T, RICHARD L Z, GRANT E D. Effects of NOx, α-Fe2O3, γ-Fe2O3, and HCl on mercury transformations in a 7-kW coal combustion system[J]. Fuel Process Technol, 2005,86(4):429-448. doi: 10.1016/j.fuproc.2004.03.003

    22. [22]

      KONG F H, QIU J R, LIU H, ZHAO R, AI Z H. Catalytic oxidation of gas-phase elemental mercury by nano-Fe2O3[J]. J Environ Sci-China, 2011,23(4):699-704. doi: 10.1016/S1001-0742(10)60438-X

    23. [23]

      ZHANG Hua-wei, CHEN Jiang-yan, ZHAO Ke, NIU Qing-xin, WANG Li. Removal of vapor-phase elemental mercury from simulated syngas using semi-coke modified by Mn/Ce doping[J]. J Fuel Chem Technol, 2016,44(4):394-400. doi: 10.1016/S1872-5813(16)30020-2 

    24. [24]

      XIE Y, LI C T, ZHAO L K, ZHANG J, ZENG G M, ZHANG X, ZHANG W, TAO S S. Experimental study on Hg0, removal from flue gas over columnar MnOx-CeO2/activated coke[J]. Appl Surf Sci, 2015,333:59-67. doi: 10.1016/j.apsusc.2015.01.234

    25. [25]

      PAPPACENA A, BOARO M, ARMELAO L, LLORCA J, TROVARELLI A. Water splitting reaction on Ce0.15Zr0.85O2 driven by surface heterogeneity[J]. Catal Sci Technol, 2015,6(2):399-403.

    26. [26]

      RERRY G K, HE J, THIELS W, PINTO N G, SMMIRNIOTIS P G. Sulfur-tolerant Mn-Ce-Ti sorbents for elemental mercury removal from flue gas:Mechanistic investigation by XPS[J]. J Phys Chem C, 2015,119(16):8634-8644. doi: 10.1021/jp512185s

    27. [27]

      SHAN W J, GUO H J, LIU C, WANG X N. Controllable preparation of CeO2, nanostructure materials and their catalytic activity[J]. J Rare Earth, 2012,30(7):665-669. doi: 10.1016/S1002-0721(12)60109-4

    28. [28]

      KONSOLAKIS M, IOAKIMIDIS Z, KRAIA T, MARNELLOS G E. Hydrogen production by ethanol steam reforming (ESR) over CeO2 supported transition metal (Fe, Co, Ni, Cu) catalysts:Insight into the structure-activity relationship[J]. Catalysts, 2016,6(3)39. doi: 10.3390/catal6030039

    29. [29]

      MOLINARI M, PARKER S C, SAYLE D C, ISLAM M. Water adsorption and its effect on the stability of low index stoichiometric and reduced surfaces of ceria[J]. J Phys Chem C, 2012,116(12):7073-7082. doi: 10.1021/jp300576b

    30. [30]

      FRONZI M, PICCININ S, DELLEY B, TRAVERSA E, STAMPFL C. Water adsorption on the stoichiometric and reduced CeO2(111) surface:A first-principles investigation[J]. Phys Chem Chem Phys, 2009,11(40):9188-9199. doi: 10.1039/b901831j

    31. [31]

      LI S Y, JIA M J, GAO J, WU P, YANG M L, HUANG S H, DOU X W, YANG Y, ZHANG W X. Infrared studies of the promoting role of water on the reactivity of Pt/FeOx catalyst in low-temperature oxidation of carbon monoxide[J]. J Phys Chem C, 2015,119(5):2483-2490.

    32. [32]

      LI C, ZHANG J H, WU J, ZHANG X B, CHEN X T, LI C, ZHANG J, ZHANG L L. Experimental study of the fly ash iron morphology effect on flue gas mercury removal[J]. Adv Mater Res, 2013,864:1513-1518.  

    33. [33]

      GU Z H, LI K Z, WANG H, WEI Y G, YAN D X, QIAO T. Syngas production from methane over CeO2-Fe2O3, mixed oxides using a chemical-looping method[J]. Kinet Catal, 2013,54(3):326-333. doi: 10.1134/S002315841303004X

    34. [34]

      WANG Y, LI C T, ZHAO L K, XIE Y E, ZHANG X, ZENG G M, WU H Y, ZHANG J. Study on the removal of elemental mercury from simulated flue gas by Fe2O3-CeO2/AC at low temperature[J]. Environ Sci Pollut R, 2016,23(6):1-12.

  • 加载中
    1. [1]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    2. [2]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    3. [3]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    4. [4]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    9. [9]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    10. [10]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    11. [11]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    12. [12]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    15. [15]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    16. [16]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    17. [17]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    18. [18]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    19. [19]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    20. [20]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

Metrics
  • PDF Downloads(1)
  • Abstract views(1082)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return