Citation: WEI Shao-qing, TENG Yang, LI Xiao-hang, SU Yin-jiao, YANG Wei, ZHANG Kai. Comparison of mercury emission from around 300 MW coal-fired power generation units between pulverized boiler and circulating fluidized-bed boiler[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(8): 1009-1016. shu

Comparison of mercury emission from around 300 MW coal-fired power generation units between pulverized boiler and circulating fluidized-bed boiler

  • Corresponding author: ZHANG Kai, kzhang@ncepu.edu.cn
  • Received Date: 24 January 2017
    Revised Date: 27 June 2017

    Fund Project: the Major Special Project of Shanxi Province MD2015-01the National Natural Science Foundation of China U1610254The project was supported by the National Natural Science Foundation of China(U1610254), the Major Special Project of Shanxi Province (MD2015-01) and the Fundamental Research Funds for the Central Universities(2017MS020)the Fundamental Research Funds for the Central Universities 2017MS020

Figures(5)

  • The mercury emission characteristics are investigated and compared at a coal-fired power plant with 330 MW pulverized coal (PC) boiler and a coal-fired power plant with 350 MW circulating fluidized bed (CFB) boiler. EPA 30B method and Ontario method were used to test the mercury concentration in flue gas at the inlet of dust extraction unit, outlet of dust extraction unit, outlet of desulfurization unit, and outlet of wet dust extraction unit. The feed coal, bottom ash, fly ash and gypsum sample were collected at the same time together with gas sampling. The effect of the existing air pollution control device on mercury control was discussed toward PC and CFB units based on the mercury distribution data. The results show that the mercury concentration at fabric filter (FF) outlet of CFB power plant is decreased to 0.43 μg/m3 and the mercury removal efficiency of FF reaches 98.9%. A predominating portion of mercury is enriched in fly ash. With respect to a PC power plant, the mercury concentrations at inlet and outlet of ESP are both higher than those in the CFB power plant, and the mercury concentration gradually drops from electrostatic precipitator (ESP) inlet to wet flue gas desulfurization (WFGD) outlet. The mercury concentration reaches a low value of 0.42 μg/m3 at the WFGD outlet, and the mercury removal efficiency of ESP and WFGD is 75.0% and 22.4%, respectively, which can meet the ultra low mercury emission controlling.
  • 加载中
    1. [1]

      YANG Ai-yong, YAN Zhicao, HUI Runtang, SHEN Zhiyong, ZHUANG Ke. The abundance, distribution, and modes of occurrence of Hg in Chinese coals[J]. Sci Technol Eng, 2105,15(32):93-100.  

    2. [2]

      Ministry of Environmental Protection. GB13223—2011 Pollutant emission standard in thermal power plant[S]. Beijing: Standards Press of China, 2011.

    3. [3]

      WU S, YANG W, ZHOU J, WANG H, XIE Z. Effects of properties of activated carbon on its activity for mercury removal and mercury desorption from used activated carbons[J]. Energy Fuels, 2015,29(3):1946-1950. doi: 10.1021/ef502868s

    4. [4]

      WANG S, ZHANG Y, GU Y, WANG J, LIU Z, ZHANG Y, CAO Y, ROMERO C E, PAN W. Using modified fly ash for mercury emissions control for coal-fired power plant applications in China[J]. Fuel, 2016,181:1230-1237. doi: 10.1016/j.fuel.2016.02.043

    5. [5]

      HONG Ya-guang, DUAN Yu-feng, ZHU Chun, SHE Min, DU Hong-fei. Experimental study on mercury adsorption of S-impregnated coconut shell activated carbon by duct injection[J]. J Eng Thermophys, 2015, 36(5): 1135-1138.

    6. [6]

      ZHANG L, WANG S, MENG Y, HAO J. Influence of Mercury and Chlorine Content of Coal on Mercury Emissions from Coal-Fired Power Plants in China[J]. Environ Sci Technol, 2012,46(11):6385-6392. doi: 10.1021/es300286n

    7. [7]

      XU Yue-yang, XUE Jian-ming, WANG Hong-liang, LI Bing, GUAN Yi-ming, LIU Jun. Research on mercury collaborative control by conventional pollutants purification facilities of coal-fired power plants[J]. Proc Chin Soc Electrical Eng, 2014,34(23):3924-3931.  

    8. [8]

      CHENG Le-ming, ZHOU Xing-long, ZHENG Cheng-hang, WANG Qin-hui, FANG Meng-xiang, SHI Zheng-lun, LUO Zhong-yang, CEN Ke-fa. Development of large-scale circulating fluidized bed boiler[J]. J Power Eng, 2008,28(6):817-826.  

    9. [9]

      HU Y, CHENG H. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations[J]. Environ Pollut, 2016,218:1209-1221. doi: 10.1016/j.envpol.2016.08.077

    10. [10]

      CHEN B, LI J S, CHEN G Q, WEI W D, YANG Q, YAO M T, SHAO J A, ZHOU M, XIA X H, DONG K Q, XIA H H, CHEN H P. China's energy-related mercury emissions: Characteristics, impact of trade and mitigation policies[J]. J Clean Prod, 2017,141:1259-1266. doi: 10.1016/j.jclepro.2016.09.200

    11. [11]

      YU L, YIN L, XU Q, XIONG Y. Effects of different kinds of coal on the speciation and distribution of mercury in flue gases[J]. J Energy Inst, 2015,88(2):136-142. doi: 10.1016/j.joei.2014.06.006

    12. [12]

      RALLO M, HEIDEL B, BRECHTEL K, MAROTO-VALER M M. Effect of SCR operation variables on mercury speciation[J]. Chem Engineer J, 2012,198-199:87-94. doi: 10.1016/j.cej.2012.05.080

    13. [13]

      EOM Y, JEON S, NGO T, KIM J, LEE T. Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst[J]. Catal Lett, 2008,121(3/4):219-225.  

    14. [14]

      ZHOU Z, LIU X, ZHAO B, CHEN Z, SHAO H, WANG L, XU M. Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants[J]. Fuel Process Technol, 2015,131:99-108. doi: 10.1016/j.fuproc.2014.11.014

    15. [15]

      CAO Y, CHENG Q, CHEN C, LIU M, WANG C, PAN W. Abatement of mercury emissions in the coal combustion process equipped with a fabric filter baghouse[J]. Fuel, 2008,87:3322-3330. doi: 10.1016/j.fuel.2008.05.010

    16. [16]

      PUDASAINEE D, KIM J, YOON Y, SEO Y. Oxidation, reemission and mass distribution of mercury in bituminous coal-fired power plants with SCR, CS-ESP and wet FGD[J]. Fuel, 2012,93:312-318. doi: 10.1016/j.fuel.2011.10.012

    17. [17]

      ZHANG L, ZHUO Y, CHEN L, XU X, CHEN C. Mercury emissions from six coal-fired power plants in China[J]. Fuel Process Technol, 2008,89(11):1033-1040. doi: 10.1016/j.fuproc.2008.04.002

    18. [18]

      DUAN Yu-feng, JIANG Yi-man, YANG Li-guo, WANG Yun-jun. Experimental study on mercury emission and adsorption in circulating fluidized bed boiler[J]. Proc Chin Soc Electrical Eng, 2014,28(32):1-5.  

    19. [19]

      CHENG C, CAO Y, ZHANG K, PAN W. Co-effects of sulfur dioxide load and oxidation air on mercury re-emission in forced-oxidation limestone flue gas desulfurization wet scrubber[J]. Fuel, 2013,116:505-511.  

    20. [20]

      YUE C, WANG J, HAN L, CHANG L, HU Y, WANG H. Effects of pretreatment of Pd/AC sorbents on the removal of Hg0 from coal derived fuel gas[J]. Fuel Process Technol, 2015,135:125-132. doi: 10.1016/j.fuproc.2014.11.038

    21. [21]

      RRUPP E C, WILCOX J. Mercury chemistry of brominated activated carbons-Packed-bed breakthrough experiments[J]. Fuel, 2014,117:351-353. doi: 10.1016/j.fuel.2013.09.017

    22. [22]

      CHANG J C S, ZHAO Y. Pilot plant testing of elemental mercury reemission from a wet scrubber[J]. Energy Fuels, 2007,22(1):338-342.  

    23. [23]

      XIN M, GUSTIN M S, LADWIG K. Laboratory study of air-water-coal combustion product (fly ash and FGD solid) mercury exchange[J]. Fuel, 2006,85(16):2260-2267. doi: 10.1016/j.fuel.2006.01.029

  • 加载中
    1. [1]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    2. [2]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    3. [3]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    4. [4]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    5. [5]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    6. [6]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    7. [7]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    8. [8]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    9. [9]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    10. [10]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    11. [11]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    12. [12]

      Xiaoyu Cao Wenchang Ke Xin Tian Luxuan Lin Yiru Zhuo Xinhang Li Dongxu Chen ChunhuiWu Yu Pei Jiaxing Yin Xiaohui Zhang Xuegao Qin Jiangyi Zhou Baoqiang Su Pingping Zhu . Polymers from the Perspective of Students: A Debate on “Is White Pollution the Fault of Plastics?”. University Chemistry, 2025, 40(4): 160-165. doi: 10.12461/PKU.DXHX202412106

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    18. [18]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(0)
  • Abstract views(1054)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return