Citation: MEI Yan-gang, WANG Zhi-qing, GAO Song-ping, ZHENG Hong-yan, ZHANG He, FANG Yi-tian. Research progress of the influence of alkali metals and alkaline earth metals on coal thermal chemical conversion[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(4): 385-394. shu

Research progress of the influence of alkali metals and alkaline earth metals on coal thermal chemical conversion

  • Corresponding author: MEI Yan-gang, meiyangang90@163.com
  • Received Date: 10 January 2020
    Revised Date: 10 March 2020

    Fund Project: The project was supported by the Youth Program National Natural Science Foundation of China (2190080794) and Natural Science Foundation of Shanxi (201901D111321)Youth Program National Natural Science Foundation of China 2190080794Natural Science Foundation of Shanxi 201901D111321

Figures(11)

  • In order to comprehensively understand the catalytic gasification process, the influence of AAEMs during coal thermal chemical conversion was compared and explained. The main issues related to the catalytic gasification, such as the transformation of carbon structure, the conversion of alkali metals, and the deactivation of catalysts were discussed. AAEMs can be used as the catalysts for catalytic gasification, the pore making additives for activated carbon preparation, the activating agents in the process of aluminum extraction from coal ash by roasting, but also be regarded as hazard elements for high AAEMs coal utilization. The interaction between AAEMs and carbon can affect the surface structure of carbon to favor the adsorption and reaction of gasification agent on the carbon surface. As the same time, the volatilization and release of AAEMs can not be escaped, but the catalyst recovery can be effectively promoted by coupling the catalytic gasification and the coal ash resource utilization. By understanding the effect of AAEMs on coal thermal chemical conversion, we can propose novel ideas and innovation techniques for coal thermal chemical conversion with AAEMs addition.
  • 加载中
    1. [1]

      JIAO W, WANG Z, ZHOU X, MEI Y, FENG R, LIU T, DING L, HUANG J, FANG Y. Catalytic steam gasification of sawdust char on K-based composite catalyst at high pressure and low temperature[J]. Chem Eng Sci, 2019,205:341-349. doi: 10.1016/j.ces.2019.05.009

    2. [2]

      LI G, LIU Z, LI J, FANG Y, LIU T, MEI Y, WANG Z. Application of general regression neural network to model a novel integrated fluidized bed gasifier[J]. Int J Hydrogen Energy, 2018,43(11):5512-5521. doi: 10.1016/j.ijhydene.2018.01.130

    3. [3]

      MEI Y, WANG Z, FANG Y, HUANG J, LI W, GUO S, LI G. CO2 catalytic gasification with NaAlO2 addition for its low-volatility and tolerant to deactivate[J]. Fuel, 2019,242:160-166. doi: 10.1016/j.fuel.2019.01.014

    4. [4]

      MIN Z, YIMSIRI P, ASADULLAH M, ZHANG S, LI C. Catalytic reforming of tar during gasification. Part II. Char as a catalyst or as a catalyst support for tar reforming[J]. Fuel, 2011,90(7):2545-5552. doi: 10.1016/j.fuel.2011.03.027

    5. [5]

      LI C. Some recent advances in the understanding of the pyrolysis and gasification behaviour of victorian brown coal[J]. Fuel, 2007,86(12):1664-1683.  

    6. [6]

      SONOYAMA N, OKUNO T, HOSOKAI S, LI C, HAYASHI J. Interparticle desorption and re-adsorption of alkali and alkaline earth metallic species within a bed of pyrolyzing char from pulverized woody biomass[J]. Energy Fuels, 2006,20:1294-1297. doi: 10.1021/ef050316y

    7. [7]

      ELDEEB A B, BRICHKIN V N, KURTENKOV R V, BORMOTOV I S. Extraction of alumina from kaolin by a combination of pyro- and hydro-metallurgical processes[J]. App Clay Sci, 2019,172:146-154. doi: 10.1016/j.clay.2019.03.008

    8. [8]

      SHEMI A, NDLOVU S, SIBANDA V, VAN L D. Extraction of alumina from coal fly ash using an acid leach-sinter-acid leach technique[J]. Hydrometallurgy, 2015,157:348-355. doi: 10.1016/j.hydromet.2015.08.023

    9. [9]

      SILVA I F, LOBO L S. Study of CO2 gasification of activated carbon catalysed by molybdenum oxide and potassium carbonate[J]. Fuel, 1986,65:1400-1403. doi: 10.1016/0016-2361(86)90113-4

    10. [10]

      DING L, ZHOU Z, GUO Q, HUO W, YU G. Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification[J]. Fuel, 2015,142:134-144. doi: 10.1016/j.fuel.2014.11.010

    11. [11]

      TANG J, WANG J. Catalytic steam gasification of coal char with alkali carbonates:A study on their synergic effects with calcium hydroxide[J]. Fuel Process Technol, 2016,142:34-41. doi: 10.1016/j.fuproc.2015.09.020

    12. [12]

      ARNOLD R A, HABIBI R, KOPYSCINSKI J, HILL J M. Interaction of potassium and calcium in the catalytic gasification of biosolids and switchgrass[J]. Energy Fuels, 2017,31(6):6240-6247. doi: 10.1021/acs.energyfuels.7b00972

    13. [13]

      LOBO L S, FIGUEIREDO J L, BERNARDO C A. Carbon formation and gasification on metals. Bulk diffusion mechanism:A reassessment[J]. Catal Today, 2011,178(1):110-116.  

    14. [14]

      GUO Tao, CAO Lin-tao, HUANG Zhong, JIANG Jian-zhong, XU Zheng-quan. Research on using technology in Zhundong high sodium coal combustion[J]. Coal Technol, 2015,34(1):331-333.  

    15. [15]

      GUO Shuai, HUO Xiao-dong, SONG Shuang-shuang, JIANG Yun-feng, ZHAO Jian-tao, FANG Yi-tian. Occurrence modes of sodium species in sodium-rich coals[J]. J Fuel Chem Technol, 2017,45(10):1171-1177.  

    16. [16]

      BAI Y, LÜ P, LI F, SONG X, SU W, YU G. Investigation into Ca/Na compounds catalyzed coal pyrolysis and char gasification with steam[J]. Energy Convers Manage, 2019,184:172-179. doi: 10.1016/j.enconman.2019.01.063

    17. [17]

      TAN Xin, LI Xuan, YU Chang-yong. Adsorption and diffusion behavior of alkali metal adatoms on graphene:A first-principle study[J]. J Atom Mol Phys, 2017,34(3):555-562. doi: 10.3969/j.issn.1000-0364.2017.03.029

    18. [18]

      KOPYSCINSKI J, RAHMAN M, GUPTA R, MIMS C A, HILL J M. K2CO3 catalyzed CO2 gasification of ash-free coal. Interactions of the catalyst with carbon in N2 and CO2 atmosphere[J]. Fuel, 2014,117:1181-1189. doi: 10.1016/j.fuel.2013.07.030

    19. [19]

      DAI Song-tao, XU Shen-qi, YU Guang-suo. Study of the experimental methods of coal gasification kinetics[J]. Coal Convers, 2008,31(3):86-91. doi: 10.3969/j.issn.1004-4248.2008.03.020

    20. [20]

      YAN Jing-chun, SHEN Lai-hong, JIANG Shou-xi, GE Hui-jun. Chemical looping combustion of high-sodium coal and gasification kinetics of coal cha[J]. J Chem Ind Eng, 2019,70(5):1913-1922.  

    21. [21]

      QUYN D M, WU H, LI C. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples[J]. Fuel, 2002,81:143-149. doi: 10.1016/S0016-2361(01)00127-2

    22. [22]

      LI X, HAYASHI J, LI C. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006,85(12):1700-1707.  

    23. [23]

      LOBO L S, CARABINERO S. Catalytic carbon gasification:Understanding catalyst-carbon contact and rate jump behavior with air[J]. Fuel Process Technol, 2018,179:313-318. doi: 10.1016/j.fuproc.2018.07.018

    24. [24]

      LOBO L S, CARABINERO S. Kinetics and mechanism of catalytic carbon gasification[J]. Fuel, 2016,183:457-469. doi: 10.1016/j.fuel.2016.06.115

    25. [25]

      LOBO L S. Intrinsic kinetics in carbon gasification:Understanding linearity, "nanoworms" and alloy catalysts[J]. Appl Catal B:Environ, 2014,148:136-143.

    26. [26]

      MSRSH H, YAN D S. Formation of active carbons from cokes using potassium hydroxide[J]. Carbon, 1984,22(6):603-611. doi: 10.1016/0008-6223(84)90096-4

    27. [27]

      HAYASHI J, KAZEHAYA A, MUROYAMA K, WATKINSON A. Preparation of activated carbon from lignin by chemical activation[J]. Carbon, 2000,38:1873-1878. doi: 10.1016/S0008-6223(00)00027-0

    28. [28]

      GAO Y, YUE Q, XU S, GAO B. Activated carbons with well-developed mesoporosity prepared by activation with different alkali salts[J]. Mater Lett, 2015,146:34-36. doi: 10.1016/j.matlet.2015.01.161

    29. [29]

      GUO S, JIANG Y, LIU T, ZHAO J, HUANG J, FANG Y. Investigations on interactions between sodium species and coal char by thermogravimetric analysis[J]. Fuel, 2018,214:561-568. doi: 10.1016/j.fuel.2017.11.069

    30. [30]

      MOLINA A, MONTOYA A, MONDRAGO'N F. CO2 strong chemisorption as an astimate of coal char gasfication reactivity[J]. Fuel, 1999,78:971-977. doi: 10.1016/S0016-2361(98)00220-8

    31. [31]

      ZAHNG Li-yuan, HU Xiao-ying, JIANG Fei, SHENG Di, WANG Chuang-hu, LV Chang-peng. Research on preparation of graphene oxide from biomass[J]. J Bengbu Univ, 2017,6(6):59-62.  

    32. [32]

      GE Tao, MA Xiang-mei. XPS study on occurrence characteristics of carbon, oxygen, nitrogen and sulfur in coking coal[J]. Coal Technol, 2018,37(3):293-295.  

    33. [33]

      HAO Wei-zhe, WANG Zhi-zhuang, ZHANG Xue-jun, TIAN Yan-hong. Evolution of element on the surface of carbon fiber during heat treatment[J]. Chem Ind Eng Prog, 2017,36(21):332-338.  

    34. [34]

      FAN Yan-zhen, WANG Zhen. Surface chemistry of activated carbon[J]. Coal Convers, 2000,23(4):26-30. doi: 10.3969/j.issn.1004-4248.2000.04.007

    35. [35]

      SUHAS , CARROTT P J, RIBEIRO C. Lignin-from natural adsorbent to activated carbon:A review[J]. Bioresour Technol, 2007,98(12):2301-2312. doi: 10.1016/j.biortech.2006.08.008

    36. [36]

      GUO Jun-chun. Technology and development of coal based activated carbon production technology[J]. Biomass Chem Ind, 2018,4(5):134-136. doi: 10.3969/j.issn.2096-0387.2018.05.039

    37. [37]

      CHEN S G, YANG R T. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O[J]. Energy Fuels, 1997,11:421-427. doi: 10.1021/ef960099o

    38. [38]

      DING L, ZHANG Y, WANG Z, HUANG J, FANG Y. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char[J]. Bioresour Technol, 2014,173:11-20. doi: 10.1016/j.biortech.2014.09.007

    39. [39]

      MEI Yan-gang, WANG Zhi-qing, FANG Hui-bin, FENG Rong-tao, FANG Yi-tian. Comparison of leaching behaviors of aluminum in ash from combustion and catalytic gasification[J]. J Fuel Chem Technol, 2017,45(4):394-399. doi: 10.3969/j.issn.0253-2409.2017.04.002 

    40. [40]

      MEI Y, WANG Z, FANG H, WANG Y, HUANG J, FANG Y. Na-containing mineral transformation behaviors during Na2CO3-catalyzed CO2 gasification of high-alumina coal[J]. Energy Fuels, 2017,31(2):1235-1242.  

    41. [41]

      CHEN Zhao-hui, LIU Lei, JIN Ya-dan, WU Li-feng, WU Heng, ZHAN Yue-ping, LI Ke-zhong, BI Ji-cheng. Pressurized catalytic gasification of high ash fusion temperature coal:Catalytic activity of K2CO3 and potassium recovery[J]. J Chem Ind Eng, 2017,68(5):2155-2161.  

    42. [42]

      KIM Y, PARK J, JUNG D, MIYAWAKI J, YOON S, MOCHIDA I. Low-temperature catalytic conversion of lignite:2. Recovery and reuse of potassium carbonate supported on perovskite oxide in steam gasification[J]. J Ind Eng Chem, 2014,20(1):194-201.  

    43. [43]

      YUAN X, FAN S, CHOI S, KIM H T, LEE K B. Potassium catalyst recovery process and performance evaluation of the recovered catalyst in the K2CO3-catalyzed steam gasification system[J]. Appl Energy, 2017,195:850-860. doi: 10.1016/j.apenergy.2017.03.088

    44. [44]

      GUO Y, LI Y, CHENG F, WANG M, WANG X. Role of additives in improved thermal activation of coal fly ash for alumina extraction[J]. Fuel Process Technol, 2013,110:114-121. doi: 10.1016/j.fuproc.2012.12.003

    45. [45]

      GUO Y, YAN K, CUI L, CHENG F. Improved extraction of alumina from coal gangue by surface mechanically grinding modification[J]. Powder Technol, 2016,302:33-41. doi: 10.1016/j.powtec.2016.08.034

    46. [46]

      POPA T, FAN M, ARGYLE M D, SLIMANE R, BELL D, TOWLER B. Catalytic gasification of a powder river basin coal[J]. Fuel, 2013,103:161-170. doi: 10.1016/j.fuel.2012.08.049

    47. [47]

      WANG Y, WANG Z, HUANG J, FANG Y. Catalytic gasification activity of Na2CO3 and comparison with K2CO3 for a high-aluminum coal char[J]. Energy Fuels, 2015,29(11):6988-6998. doi: 10.1021/acs.energyfuels.5b01537

  • 加载中
    1. [1]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    2. [2]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    3. [3]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    4. [4]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    5. [5]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    8. [8]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    9. [9]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    10. [10]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    17. [17]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    18. [18]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

    19. [19]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    20. [20]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

Metrics
  • PDF Downloads(13)
  • Abstract views(1800)
  • HTML views(370)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return