Citation: ZHANG Xiao-feng, XUE Ji-long, MENG Yue, QIAN Meng-dan, XIA Sheng-jie, NI Zhe-ming. Reaction mechanism of water gas shift reaction Aun clusters:A density functional theory study[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(12): 1473-1480. shu

Reaction mechanism of water gas shift reaction Aun clusters:A density functional theory study

  • Corresponding author: NI Zhe-ming, jchx@zjut.edu.cn
  • Received Date: 12 June 2017
    Revised Date: 28 September 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China (21503188) and the Zhejiang Provincial Natural Science Foundation of China (LQ15B030002)the Zhejiang Provincial Natural Science Foundation of China LQ15B030002the National Natural Science Foundation of China 21503188

Figures(9)

  • The stability and catalytic activity of Au10, Au13 and Au20 clusters in water gas shift reaction (WGSR) were investigated by density functional theory (DFT); the adsorption behavior of reaction species and the reaction mechanism of WGSR on various Aun clusters were explored. The results indicated that the stability of three Aun clusters follows the order Au10 < Au13 < Au20, whereas their electron delocalization and adsorption capacity decreases in the sequence of Au13 > Au10 > Au20. Three Aun clusters exhibit the same rate-determining step for WGSR, i.e. H2O dissociation; however, they are quite different in the actual reaction routes. Over Au10 cluster, the WGSR reaction follows the carboxyl mechanism, characterized by the direct dissociation of COOH*; over Au13 cluster, the redox mechanism applies, suggested by the disproportionation of two OH*; over Au20 cluster, the WGSR reaction proceeds via the carboxyl mechanism, represented by the disproportionation of COOH* and OH*. A comparison for the optimal reaction paths over three Aun clusters suggests that the Au13 cluster has the highest catalytic activity in the WGSR reaction at low temperature.
  • 加载中
    1. [1]

      ZHU Qiao-qiao, CHENG Ji-hua. Research progress of hydrogen energy preparation technology[J]. Energy Conserv Emiss, 2015,12:51-54.  

    2. [2]

      CHEN L, NI G, HAN B, ZHOU C G, WU J P. Mechanism of water gas shift reaction on Fe3O4 (111) surface[J]. Acta Chim Sin, 2011,69(4):393-398.  

    3. [3]

      MAO Jiang-hong, NI Zhe-ming, PAN Guo-xiang, XU Qian. Mechanism of the copper catalyzed water gas shift reaction[J]. Acta Phys Chim Sin, 2008,24(11):2059-2064. doi: 10.3866/PKU.WHXB20081121

    4. [4]

      NGUYEN-PHAN T D, BABER A E, RODRIGUEZ J A, SENANAYAKE S D. Au and Pt nanoparticle supported catalysts tailored for H2 production: from models to powder catalysts[J]. Appl Catal A: Gen, 2015,518:18-47.  

    5. [5]

      PEREZ P, SORIA M A, CARABINEIRO S A C, MALDONADO-HODAR F J, MENDES A. Application of Au/TiO2 catalysts in the low temperature water gas shift reaction[J]. Int J Hydrogen Ene, 2016,41(8):4670-4681. doi: 10.1016/j.ijhydene.2016.01.037

    6. [6]

      ÖZYONUM G N, YILDIRIM R. Water gas shift activity of Au-Re catalyst over microstructured cordierite monolith wash-coated by ceria[J]. Int J Hydrogen Enegy, 2016,41(12):5513-5521. doi: 10.1016/j.ijhydene.2016.02.025

    7. [7]

      GAMBOA-ROSALES N K, AYASTUY J L, GUTIERREZ-ORTIZ M A. Effect of Au in Au-Co3O4/CeO2 catalyst during oxygen-enhanced water gas shift[J]. Int J Hydrogen Enegy, 2016,41(42):19408-19417. doi: 10.1016/j.ijhydene.2016.05.237

    8. [8]

      RODRIGUEZ J A, LIU P, HRBEK J, PEREZ M, EVANS J. Water gas shift activity of Au and Cu nanoparticles supported on molybdenum oxides[J]. J Mol Catal A Chem, 2008,281(1/2):59-65.  

    9. [9]

      YU Qing-qiang, DONG Yuan-yuan, LIAO Wei-ping, JIN Ming-shan, HE Tao, SUO Zhang-huai. Preparation of ceria-alumina and catalytic activity of gold catalyst supported on ceria-alumina for water gas shift reaction[J]. J Fuel Chem Technol, 2010,38(2):223-229.  

    10. [10]

      CASTANO , REINA T R, IVANOVA S, CENTENO M A, ODRIOZOLA J A. Pt vs. Au in water gas shift reaction[J]. J Catal, 2014,314:1-9. doi: 10.1016/j.jcat.2014.03.014

    11. [11]

      HUANG Jun. Gold nanoparticles catalyzed low-temperature CO oxidation and novel system for green reduction[D]. Shanghai: Fudan University, 2013. 

    12. [12]

      CHEN Y, WANG H, BURCH R, HARDACRE C, HU P. New insight into mechanisms in water gas shift reaction on Au/CeO2(111): a density functional theory and kinetic study[J]. Faraday Discuss, 2011,152(1)121.  

    13. [13]

      CHEN Y, CHENG J, HU P, WANG H. Examining the redox and formate mechanisms for water gas shift reaction on Au/CeO2 using density functional theory[J]. Surf Sci, 2008,602(17):2828-2834. doi: 10.1016/j.susc.2008.06.033

    14. [14]

      FEDOROV A V, KHMEL'T A. DFT and in situ EXAFS investigation of gold/ceria-zirconia low temperature water gas shift catalysts: identification of the nature of the active form of gold[J]. J Phys Chem B, 2005,109(47):2253-9.  

    15. [15]

      SAQLAIN M A, HUSSAIN A, SIDDIQ D M, LEENAERTS O, LEITAO A A. DFT study of synergistic catalysis of the water gas shift reaction on Cu-Au bimetallic surfaces[J]. ChemCatChem, 2016,8(6):1208-1217. doi: 10.1002/cctc.201501312

    16. [16]

      JIANG Jun-hui, CAO Yong-yong, NI Zhe-ming, ZHANG Lian-yang. Comparison of reaction mechanism of thiophene hydrodesulfurization on Au13 and Pt13 clusters[J]. J Fuel Chem Technol, 2016,44(8):961-969.  

    17. [17]

      ANDERSSON T, ZHANG C, BJORNEHOLM O, MIKKELA M H, JANKALA K. Electronic structure transformation in small bare Au clusters as seen by X-ray photoelectron spectroscopy[J]. J Phys B: At Mol Ophys, 2017,50(1)015102. doi: 10.1088/1361-6455/50/1/015102

    18. [18]

      CHENG X, LI F, WANG C. Density functional theory study of CO oxidation by O2, on Aun, (n=11, 13 and 14) clusters as catalysis: from a comparative review[J]. Comput Theor Chem, 2016,1097:1-7. doi: 10.1016/j.comptc.2016.10.007

    19. [19]

      DENG Xiao-hui. A theoretical study on geometries and electronic structure of gold clusters[D]. Chengdu: Sichuan University, 2007. 

    20. [20]

      WANG S, WANG W N, LU J, CHEN G H, FAN K N. A theoretical study on Aun (n=2-20) with combined density functional and genetic algorithm methods[J]. Acta Chim Sin, 2007,65(19):2085-2091.  

    21. [21]

      LIU Xiao-ming, NI Zhe-ming, YAO Ping, XU Qian, MAO Jiang-hong, WANG Qiao-qiao. Comparison of three reaction mechanisms for the water gas shift reaction on Au(111) surface[J]. Acta Phys-Chim Sin, 2010,26(6):1599-1606.  

    22. [22]

      REN N N, GUO L, DONG X N, WEN C X. Theoretical study on menchanism of water gas shift reaction catalyzed by binary copper cluster[J]. Acta Chim Sinica, 2015,73(4):343-348. doi: 10.6023/A14110790

    23. [23]

      MOHSENZADEH A, RICHARDS T, BOLTON K. DFT study of the water gas shift reaction on Ni(111), Ni(100) and Ni(110) surfaces[J]. Surf Sci, 2016,644:53-63. doi: 10.1016/j.susc.2015.09.014

    24. [24]

      ZHOU M X, LIU B. DFT investigation on the competition of the water gas shift reaction versus methanation on clean and potassium-modified Nickel(111) surfaces[J]. ChemCatChem, 2015,7:3928-3935. doi: 10.1002/cctc.201500547

    25. [25]

      ZHAO Guo-li, LIU Dan, LIU Shi, ZHANG Xiao-tong, GUI Jian-zhou, SUN Zhao-lin. DFT studies of activity of water gas shift reaction by several metals catalyzed[J]. J Petrochem Univ, 2005,8(2):19-23.  

    26. [26]

      WILLIAMS W D, GREELEY J P, DELGASS W N, RIBEIRO F H. Water activation and carbon monoxide coverage effects on maximum rates for low temperature water-gas shift catalysis[J]. J Catal, 2017,347:197-204. doi: 10.1016/j.jcat.2017.01.016

    27. [27]

      LIN R J, CHEN H L, JU S P. Quantum-chemical calculations on the mechanism of the water-gas shift reaction on nanosized gold cluster[J]. J Phys Chem C, 2012,116(1):336-342. doi: 10.1021/jp209172w

  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    6. [6]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    10. [10]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    11. [11]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    12. [12]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    13. [13]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    16. [16]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    17. [17]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    18. [18]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    19. [19]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    20. [20]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

Metrics
  • PDF Downloads(0)
  • Abstract views(1349)
  • HTML views(218)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return