Reaction mechanism of water gas shift reaction Aun clusters:A density functional theory study
- Corresponding author: NI Zhe-ming, jchx@zjut.edu.cn
Citation:
ZHANG Xiao-feng, XUE Ji-long, MENG Yue, QIAN Meng-dan, XIA Sheng-jie, NI Zhe-ming. Reaction mechanism of water gas shift reaction Aun clusters:A density functional theory study[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(12): 1473-1480.
ZHU Qiao-qiao, CHENG Ji-hua. Research progress of hydrogen energy preparation technology[J]. Energy Conserv Emiss, 2015,12:51-54.
CHEN L, NI G, HAN B, ZHOU C G, WU J P. Mechanism of water gas shift reaction on Fe3O4 (111) surface[J]. Acta Chim Sin, 2011,69(4):393-398.
MAO Jiang-hong, NI Zhe-ming, PAN Guo-xiang, XU Qian. Mechanism of the copper catalyzed water gas shift reaction[J]. Acta Phys Chim Sin, 2008,24(11):2059-2064. doi: 10.3866/PKU.WHXB20081121
NGUYEN-PHAN T D, BABER A E, RODRIGUEZ J A, SENANAYAKE S D. Au and Pt nanoparticle supported catalysts tailored for H2 production: from models to powder catalysts[J]. Appl Catal A: Gen, 2015,518:18-47.
PEREZ P, SORIA M A, CARABINEIRO S A C, MALDONADO-HODAR F J, MENDES A. Application of Au/TiO2 catalysts in the low temperature water gas shift reaction[J]. Int J Hydrogen Ene, 2016,41(8):4670-4681. doi: 10.1016/j.ijhydene.2016.01.037
ÖZYONUM G N, YILDIRIM R. Water gas shift activity of Au-Re catalyst over microstructured cordierite monolith wash-coated by ceria[J]. Int J Hydrogen Enegy, 2016,41(12):5513-5521. doi: 10.1016/j.ijhydene.2016.02.025
GAMBOA-ROSALES N K, AYASTUY J L, GUTIERREZ-ORTIZ M A. Effect of Au in Au-Co3O4/CeO2 catalyst during oxygen-enhanced water gas shift[J]. Int J Hydrogen Enegy, 2016,41(42):19408-19417. doi: 10.1016/j.ijhydene.2016.05.237
RODRIGUEZ J A, LIU P, HRBEK J, PEREZ M, EVANS J. Water gas shift activity of Au and Cu nanoparticles supported on molybdenum oxides[J]. J Mol Catal A Chem, 2008,281(1/2):59-65.
YU Qing-qiang, DONG Yuan-yuan, LIAO Wei-ping, JIN Ming-shan, HE Tao, SUO Zhang-huai. Preparation of ceria-alumina and catalytic activity of gold catalyst supported on ceria-alumina for water gas shift reaction[J]. J Fuel Chem Technol, 2010,38(2):223-229.
CASTANO , REINA T R, IVANOVA S, CENTENO M A, ODRIOZOLA J A. Pt vs. Au in water gas shift reaction[J]. J Catal, 2014,314:1-9. doi: 10.1016/j.jcat.2014.03.014
HUANG Jun. Gold nanoparticles catalyzed low-temperature CO oxidation and novel system for green reduction[D]. Shanghai: Fudan University, 2013.
CHEN Y, WANG H, BURCH R, HARDACRE C, HU P. New insight into mechanisms in water gas shift reaction on Au/CeO2(111): a density functional theory and kinetic study[J]. Faraday Discuss, 2011,152(1)121.
CHEN Y, CHENG J, HU P, WANG H. Examining the redox and formate mechanisms for water gas shift reaction on Au/CeO2 using density functional theory[J]. Surf Sci, 2008,602(17):2828-2834. doi: 10.1016/j.susc.2008.06.033
FEDOROV A V, KHMEL'T A. DFT and in situ EXAFS investigation of gold/ceria-zirconia low temperature water gas shift catalysts: identification of the nature of the active form of gold[J]. J Phys Chem B, 2005,109(47):2253-9.
SAQLAIN M A, HUSSAIN A, SIDDIQ D M, LEENAERTS O, LEITAO A A. DFT study of synergistic catalysis of the water gas shift reaction on Cu-Au bimetallic surfaces[J]. ChemCatChem, 2016,8(6):1208-1217. doi: 10.1002/cctc.201501312
JIANG Jun-hui, CAO Yong-yong, NI Zhe-ming, ZHANG Lian-yang. Comparison of reaction mechanism of thiophene hydrodesulfurization on Au13 and Pt13 clusters[J]. J Fuel Chem Technol, 2016,44(8):961-969.
ANDERSSON T, ZHANG C, BJORNEHOLM O, MIKKELA M H, JANKALA K. Electronic structure transformation in small bare Au clusters as seen by X-ray photoelectron spectroscopy[J]. J Phys B: At Mol Ophys, 2017,50(1)015102. doi: 10.1088/1361-6455/50/1/015102
CHENG X, LI F, WANG C. Density functional theory study of CO oxidation by O2, on Aun, (n=11, 13 and 14) clusters as catalysis: from a comparative review[J]. Comput Theor Chem, 2016,1097:1-7. doi: 10.1016/j.comptc.2016.10.007
DENG Xiao-hui. A theoretical study on geometries and electronic structure of gold clusters[D]. Chengdu: Sichuan University, 2007.
WANG S, WANG W N, LU J, CHEN G H, FAN K N. A theoretical study on Aun (n=2-20) with combined density functional and genetic algorithm methods[J]. Acta Chim Sin, 2007,65(19):2085-2091.
LIU Xiao-ming, NI Zhe-ming, YAO Ping, XU Qian, MAO Jiang-hong, WANG Qiao-qiao. Comparison of three reaction mechanisms for the water gas shift reaction on Au(111) surface[J]. Acta Phys-Chim Sin, 2010,26(6):1599-1606.
REN N N, GUO L, DONG X N, WEN C X. Theoretical study on menchanism of water gas shift reaction catalyzed by binary copper cluster[J]. Acta Chim Sinica, 2015,73(4):343-348. doi: 10.6023/A14110790
MOHSENZADEH A, RICHARDS T, BOLTON K. DFT study of the water gas shift reaction on Ni(111), Ni(100) and Ni(110) surfaces[J]. Surf Sci, 2016,644:53-63. doi: 10.1016/j.susc.2015.09.014
ZHOU M X, LIU B. DFT investigation on the competition of the water gas shift reaction versus methanation on clean and potassium-modified Nickel(111) surfaces[J]. ChemCatChem, 2015,7:3928-3935. doi: 10.1002/cctc.201500547
ZHAO Guo-li, LIU Dan, LIU Shi, ZHANG Xiao-tong, GUI Jian-zhou, SUN Zhao-lin. DFT studies of activity of water gas shift reaction by several metals catalyzed[J]. J Petrochem Univ, 2005,8(2):19-23.
WILLIAMS W D, GREELEY J P, DELGASS W N, RIBEIRO F H. Water activation and carbon monoxide coverage effects on maximum rates for low temperature water-gas shift catalysis[J]. J Catal, 2017,347:197-204. doi: 10.1016/j.jcat.2017.01.016
LIN R J, CHEN H L, JU S P. Quantum-chemical calculations on the mechanism of the water-gas shift reaction on nanosized gold cluster[J]. J Phys Chem C, 2012,116(1):336-342. doi: 10.1021/jp209172w
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
(a):Au10; (b): Au13; (c): Au20
*: a vacant site; X*: an adsorbed X species; A, B, C, Da1, Da2, Db1, Db2, E, F, G, H : reaction step