Performance of various catalysts in hydropyrolysis of organic matters and reaction mechanisms
- Corresponding author: LI Xian-qing, lixq@cumtb.edu.cn
Citation:
LIU Yang, HE Kun, LI Xian-qing, HAN Rui, WANG Zhe, XU Hong-wei. Performance of various catalysts in hydropyrolysis of organic matters and reaction mechanisms[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(1): 53-59.
LI Bao-qing. Hydropyrolysis of Chinese coals Ⅱ. Thermogravimetric study on catalytic and non-catalytic hydropyrolysis of Xianfeng lignite[J]. J Fuel Chem Technol, 1995,23(2):186-191.
LI Bao-qing. Hydropyrolysis of Chinese coals Ⅲ. Catalytic and non-catalytic hydropyrolysis under H2-CH4 of Shenfu bituminous coal[J]. J Fuel Chem Technol, 1995,23(2):192-196.
PETERS K E, MOLDOWAN J M. The bionmarker guide: Interpreting molecular fossoils in petroleum and ancient sediments[M]. New Jersey: Prentice Hall, 1993: 170-176.
FU Jia-mo, SHENG Guo-ying, XU Jia-you, JIA Rong-fen, FAN Shan-fa, PENG Ping-an, EGLINTON G, GOWAR A P. Application of biomarker compounds in assessment of paleoenvironxnents of Chinese terrestrial sediments[J]. Geochimica, 1991,20(1):1-12.
LOVE G D, SNAPE C E, CAM A D. Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis[J]. Org Geochem, 1995,23(10):981-986. doi: 10.1016/0146-6380(95)00075-5
IKENAGA N, KAN-NAN S, SAKODA T, SUZUKI T. Coal hydroliquefaction using highly dispersed catalyst precursors[J]. Catal Today, 1997,39(1/2):99-109.
INUKAI Y. Hydroliquefaction of Illinois NO.6 coal with petroleum atmospheric residue using oil-soluble molybdenum catalyst[J]. Fuel Process Technol, 1995,43(2):157-167. doi: 10.1016/0378-3820(95)00017-2
YUE Chang-tao, LI Shu-yuan, XU Ming, ZHONG Ning-ning. Simulation experiments on the TSR system of diesel and mangnesium sulfate[J]. Pet Geol Exp, 2010,32(6):610-614.
ROCHA J D, BROWN S D, LOVE G D, SNAPE C E. Hydropyrolysis: A versatile technique for solid fuel liquefaction, sulfur speciation and biomarker release[J]. J Anal Appl Pyrolysis, 1997,40-41:91-103. doi: 10.1016/S0165-2370(97)00041-7
RUSSELL C A, SNAPE C E, MEREDITH W. The potential of bound biomarker prfiles released from catalytic hydropymlysis to reconstruction basin charging history for oils[C]. Abstract for 21th International Meeting on Organic Geochemistry K rakow. 2003: 160-161.
LOCKHART R S, MEREDIT H W, LOVE G D. Release of bound aliphatic biomarkers via hydropyrolysis from Type Ⅱ kerogen at high maturity[J]. Org Geochem, 2008,39(8):1119-1124. doi: 10.1016/j.orggeochem.2008.03.016
HE K, ZHANG S C, MI J K. Mechanism of catalytic hydropyrolysis of sedimentary organic matter with MoS2[J]. Pet Sci, 2011,8(2):134-142. doi: 10.1007/s12182-011-0126-0
ZELENSKI C M, DORHOUT P K. Template synthesis of near-monodisperse microscale nanofibers and nanotubes of MoS2[J]. J Am Chem Soc, 1998,120(4):734-742. doi: 10.1021/ja972170q
FARAG H, EI-HEDAWY A, SAKAISHI K, KISHIDA M, MOCHIDA I. Catalytic activity of synthesized nanosized molybdenum disulfide for the hydrodesulfurization of dibenzthiophene: Effect of H2S partial pressure[J]. Appl Catal B: Environ, 2009,91(1/2):189-197.
SONG J H, CHEN P L, KIM S H. Catalytic cracking of n-hexane over MoO2[J]. J Mol Catal A, 2002,184(1/2):197-202.
PINTO F, GULYURTLU I, LOBO L S, CABRITA I. The effect of catalyst blending on coal hydropyrolysis[J]. Fuel, 1999,78(7):761-768. doi: 10.1016/S0016-2361(98)00212-9
SONG C S, NOMURA M, MIYAKE M. Coal hydroliquefaction using MoCl3-and NiCl2-containing salts as catalysts: Difference in catalysis between solid and molten catalysis[J]. Fuel, 1986,65(7):922-926. doi: 10.1016/0016-2361(86)90199-7
WANG L, CHEN P. Mechanism study of iron-based catalysts in co-liquefaction of coal with waste plastics[J]. Fuel, 2002,81(6):811-815. doi: 10.1016/S0016-2361(01)00201-0
HE K, DONG Y M, LI Z. Catalytic ozonation of phenol in water with natural brucite and magnesia[J]. J Hazard Mater, 2008,159(2/3):587-592.
HE K, DONG Y M, LIN Y. A facile hydrothermal method to synthesize nanosized Co3O4/CeO2 and study of its catalytic characteristic in catalytic ozonation of phenol[J]. Catal Lett, 2009,133(1):209-213.
PRIYANTO U, SAKANISHI K, OKUMA O, MOCHIDA I. Liquefaction of Tanito Harum coal with bottom recycle using FeNi and FeMoNi catalysts supported on carbon nanoparticles[J]. Fuel Process Technol, 2002,79(1):51-62. doi: 10.1016/S0378-3820(02)00101-7
SONG C, SAINI A K, YONEYAMA Y. A new process for catalytic liquefaction of coal using dispersed MoS2 catalytic generated in situ with added H2O[J]. Fuel, 2000,79(3/4):249-261.
BOONE W P, EKERDT J G. Hydrodesulfurization studies with a single-layer molybdenum disulfite catalyst[J]. J Catal, 2000,193(1):96-102. doi: 10.1006/jcat.2000.2884
ZHANG T W, AMRANI A, ELLIS G S, MA Q S, TANG Y C. Experimental investigation on thermochemical sulfate reduction by H2S initiation[J]. Geochim Cosmochim Acta, 2008,72(14):3518-3530. doi: 10.1016/j.gca.2008.04.036
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Qianlang Wang , Jijun Sun , Qian Chen , Quanqin Zhao , Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Yongjian Zhang , Fangling Gao , Hong Yan , Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
(a): Kerogen of Du-13; (b): Kerogen of Zhaoshen-5; (c): Fuxin coal