Citation: LI Wei-wei, HUANG Jie-jie, WANG Zhi-qing, DUAN Hui-wen, LI Jun-guo, FANG Yi-tian. Reaction kinetics of coal char gasification with CO2 and the effect of internal diffusion on the gasification[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(12): 1416-1421. shu

Reaction kinetics of coal char gasification with CO2 and the effect of internal diffusion on the gasification

  • Corresponding author: HUANG Jie-jie, huangjj@sxicc.ac.cn
  • Received Date: 29 July 2016
    Revised Date: 9 October 2016

Figures(7)

  • The effects of temperature (850-1 150℃) and particle size (<60, 505, 950, 1 515 and 2 000 μm) on the gasification of Shenmu coal char with CO2 were investigated by using thermogravimetric apparatus (TGA) under atmospheric pressure. Three kinetic models of volumetric, shrinking core and random pore were applied to validate the experimental results, which illustrates that the random pore model can accurately predict the conversion rate for coal char gasification. Thiele modulus and effectiveness factor were determined on the basis of the intrinsic kinetic rate at 850-1 000℃; a comparison between calculated and experimental effective factors suggests that the calculated effective factor can give a quantitative estimation of the effect of internal diffusion on the initial stage of gasification, but cannot describe the whole gasification process.
  • 加载中
    1. [1]

      XIANG Yin-hua, WANG Yang, ZHANG Jian-min, HUANG Jie-jie, ZHAO Jian-tao. A study on kinetic models of char gasification[J]. J Fuel Chem Technol, 2002,30(1):21-26.  

    2. [2]

      AHMED I I, GUPTA A K. Particle size,porosity and temperature effects on char conversion[J]. Appl Energy, 2011,88(12):4667-4677. doi: 10.1016/j.apenergy.2011.06.001

    3. [3]

      MOLINA A, MONDRAGON F. Reactivity of coal gasification with steam and CO2[J]. Fuel, 1998,77(15):1831-18399. doi: 10.1016/S0016-2361(98)00123-9

    4. [4]

      IRFAN MF, USMAN MR, KUSAKABE K. Coal gasification in CO2 atmosphere and its kinetics since 1948:A brief review[J]. Energy, 2011,36(1):12-40. doi: 10.1016/j.energy.2010.10.034

    5. [5]

      ZHNAG Lin-xian, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Study on reactivity of Chinese anthracite chars gasification-comparison of reactivity between steam and CO2 gasification[J]. J Fuel Chem Technol, 2006,34(3):265-269.  

    6. [6]

      KABIR K B, TAHMASEBI A, BHATTACHARYA S, YU J L. Intrinsic kinetics of CO2 gasification of a Victorian coal char[J]. J Therm Anal Calorim, 2016,123(2):1685-1694. doi: 10.1007/s10973-015-5060-8

    7. [7]

      LIN Shan-jun, ZHOU Zhi-jie, HUO Wei, DING Lu, YU Guang-suo. Effect of internal diffusion on steam gasification reactivity of coal and petroleum coke[J]. J Fuel Chem Technol, 2014,42(8):905-912.  

    8. [8]

      OLLERO P, SERRERA A, ARJONA R, ALCANTARILLA S. Diffusional effects in TGA gasification experiments for kinetic determination[J]. Fuel, 2002,81(15):1989-2000. doi: 10.1016/S0016-2361(02)00126-6

    9. [9]

      MANI T, MAHINPEY N, MURUGAN P. Reaction kinetics and mass transfer studies of biomass char gasification with CO2[J]. Chem Eng Sci, 2011,66(1):36-41. doi: 10.1016/j.ces.2010.09.033

    10. [10]

      KIM R G, HWANG C-W, JEON C-H. Kinetics of coal char gasification with CO2:Impact of internal/external diffusion at high temperature and elevated pressure[J]. App Energy, 2014,129(1):299-307.  

    11. [11]

      HUO W, ZHOU Z J, WANG F C, YU G S. Mechanism analysis and experimental verification of pore diffusion on coke and coal char gasification with CO2[J]. Chem Eng J, 2014,244(15):227-233.  

    12. [12]

      VINCENT S S, MAHINPEY N, AQSHA A. Mass transfer studies during CO2 gasification of torrefied and pyrolyzed chars[J]. Energy, 2014,67(1):319-327.  

    13. [13]

      ISHIDA M, WEN C Y. Comparison of zone-reaction model and unreacted-core shrinking model in solid-gas reactions-I Isothermal analysis[J]. Chem Eng Sci, 1971,26(7):1031-1041. doi: 10.1016/0009-2509(71)80017-9

    14. [14]

      SZEKELY J, EVANS J W. A Structural model for gas-solid reactions with a moving boundary[J]. Chem Eng Sci, 1970,25(6):1091-1107. doi: 10.1016/0009-2509(70)85053-9

    15. [15]

      BHATIA S K, PERMUTTER D D. A random pore model for fluid-solid reactions:1.Isothermal,kinetic control[J]. AIChE J, 1980,26(3):379-386. doi: 10.1002/(ISSN)1547-5905

    16. [16]

      LIU G, WU H, GUPTA R P, LUCAS J A, TATE AG, WALL T F. Mathematical modeling of coal char reactivity with CO2 at high pressures and temperatures[J]. Fuel, 2000,79(10):627-633.  

    17. [17]

      KAJITANI S, SUZUKI N, ASHIZAWA M, HARA S. CO2 gasification rate analysis of coal char in entrained flow coal gasifier[J]. Fuel, 2006,85(2):163-169. doi: 10.1016/j.fuel.2005.07.024

    18. [18]

      LAURENDEAU N M. Heterogeneous kinetics of coal char gasification and combustion[J]. Prog Energy Combust Sci, 1978,4(4):221-270. doi: 10.1016/0360-1285(78)90008-4

  • 加载中
    1. [1]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    2. [2]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 100025-0. doi: 10.3866/PKU.WHXB202404024

    3. [3]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    4. [4]

      Ruiyun LiuPing WangXuefei WangFeng ChenHuogen Yu . Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100137-0. doi: 10.1016/j.actphy.2025.100137

    5. [5]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    6. [6]

      Wenhui LiYakun TangYusheng ZhouYue ZhangWenhai ZhangQingtao MaLang LiuSen DongYuliang Cao . Enhanced sodium storage performance of asphalt-derived hard carbon through intramolecular oxidation for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(10): 100119-0. doi: 10.1016/j.actphy.2025.100119

    7. [7]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    8. [8]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    9. [9]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    10. [10]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    11. [11]

      Zixuan Jiang Yihan Wen Kejie Chai Weiming Xu . Exploring Chemistry Bridging Education from Data-Driven to Symbol Establishment within the Framework of AI Models. University Chemistry, 2025, 40(9): 132-141. doi: 10.12461/PKU.DXHX202502004

    12. [12]

      Yalu Ma Yun Tian Xiaofei Ma . DeepSeek Large Model: Implications for Inorganic Chemistry Teaching and Learning. University Chemistry, 2025, 40(9): 171-177. doi: 10.12461/PKU.DXHX202502109

    13. [13]

      Xiaolong Zhang Mingshan Jin Shaoli Liu Bingfei Yan Yun Li . Constructing High-Precision Potential Energy Surfaces Based on Physical Models: A Comprehensive Computational Chemistry Experiment. University Chemistry, 2025, 40(10): 257-262. doi: 10.12461/PKU.DXHX202411049

    14. [14]

      Wenwen Ma Liyan Liu Chengyang Yin Hongdan Zhang Lian Kong Na Wei Zhan Yu Zhen Zhao . Exploration of the Online and Offline Mixed Teaching Mode of Specialized English for Chemistry Majors Based on the BOPPPS Model. University Chemistry, 2025, 40(9): 287-294. doi: 10.12461/PKU.DXHX202410026

    15. [15]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    18. [18]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    19. [19]

      Zhi FANGLiang SUNMingze ZHENGWenhao SHENGHongliang HUANGChongli ZHONG . An aluminum-based metal-organic framework with slit pores for the efficient separation and recovery of electronic specialty gas C3F8. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2054-2062. doi: 10.11862/CJIC.20250096

    20. [20]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

Metrics
  • PDF Downloads(36)
  • Abstract views(2733)
  • HTML views(835)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return