Citation: CHAI Mei-yun, LIU Rong-hou, HE Yi-feng, LI Chong. Effect of ZSM-5 on hydrocarbon selectivity of corn stalk catalytic pyrolysis at different pyrolysis temperatures[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(5): 577-583. shu

Effect of ZSM-5 on hydrocarbon selectivity of corn stalk catalytic pyrolysis at different pyrolysis temperatures

  • Corresponding author: LIU Rong-hou, liurhou@sjtu.edu.cn
  • Received Date: 24 February 2020
    Revised Date: 29 April 2020

    Fund Project: the National Natural Science Foundation of China 51776127The project was supported by the National Natural Science Foundation of China (51776127)

Figures(4)

  • In order to study the effect of ZSM-5 on the catalytic pyrolysis characteristic and hydrocarbon selectivity of corn stalk catalytic pyrolysis at different pyrolysis temperatures, the thermogravimetric analysis (TGA) was used to obtain the TG and DTG profiles of corn stalk pyrolysis with and without ZSM-5, and the pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) tests were conducted to analyze the products distribution of corn stalk pyrolysis with and without ZSM-5 at 450, 500, 550, and 600 ℃. The results show that ZSM-5 can decrease the pyrolysis temperature at the highest pyrolysis rate by 23 ℃. Without ZSM-5, both the categories of pyrolysis compounds and the hydrocarbon yield increase with the increase of pyrolysis temperature, and the selectivity of hydrocarbon reaches to the highest value of 11.33% at 600 ℃. However, with ZSM-5, the hydrocarbon yield increases at first and then decreases with the increase of pyrolysis temperature, and the selectivity of hydrocarbon is up to the highest value of 29.24% at 550 ℃. Toluene, indene, naphthalene and 2-methyl-naphthalene are evolved as the main compounds with ZSM-5. And the maximum yields of toluene and naphthalene reach to 4.76% and 3.96%, respectively.
  • 加载中
    1. [1]

      CHEN D Y, GAO D X, CAPAREDA S C, HUANG S C, WANG Y. Effects of hydrochloric acid washing on the microstructure and pyrolysis bio-oil components of sweet sorghum bagasse[J]. Bioresour Technol, 2019,277:37-45. doi: 10.1016/j.biortech.2019.01.023

    2. [2]

      HU J J, LI C, GUO Q H, DANG J T, ZHANG Q G, LEE D J, YANG Y L. Syngas production by chemical-looping gasification of wheat straw with Fe-based oxygen carrier[J]. Bioresour Technol, 2018,263:273-279. doi: 10.1016/j.biortech.2018.02.064

    3. [3]

      MEI Y F, CHAI M Y, SHEN C J, LIU B B, LIU R H. Effect of methanol addition on properties and aging reaction mechanism of bio-oil during storage[J]. Fuel, 2019,244:499-507. doi: 10.1016/j.fuel.2019.02.012

    4. [4]

      CHEN T J, DENG C J, LIU R H. Effect of selective condensation on the characterization of bio-oil from pine sawdust fast pyrolysis using a fluidized-bed reactor[J]. Energy Fuels, 2010,24(12):6616-6623. doi: 10.1021/ef1011963

    5. [5]

      HUBER G W, IBORRA S, CORMA A. Synthesis of Transportation Fuels from Biomass:Chemistry, Catalysts, and Engineering[M]. United States:Chemical Reviews, 2006.

    6. [6]

      WANG S R, DAI G X, YANG H P, LUO Z Y. Lignocellulosic biomass pyrolysis mechanism:A state-of-the-art review[J]. Prog Energy Combust Sci, 2017,62:33-86. doi: 10.1016/j.pecs.2017.05.004

    7. [7]

      JAE J, TOMPSETT G A, FOSTER A J, HAMMOND K D, AUERBACH S M, LOBO R F, HUBER G W. Investigation into the shape selectivity of zeolite catalysts for biomass conversion[J]. J Catal, 2011,279(2):257-268. doi: 10.1016/j.jcat.2011.01.019

    8. [8]

      DU S C, GAMLIEL D P, VALLA J A, BOLLAS G M. The effect of ZSM-5 catalyst support in catalytic pyrolysis of biomass and compounds abundant in pyrolysis bio-oils[J]. J Anal Appl Pyrolysis, 2016,122:7-12. doi: 10.1016/j.jaap.2016.11.002

    9. [9]

      LIU S Y, ZHANG Y N, FAN L L, ZHOU N, TIAN G Y, ZHU X D, CHENG Y L, WANG Y P, LIU Y H, CHEN P, RUAN R. Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis[J]. Fuel, 2017,196:261-268. doi: 10.1016/j.fuel.2017.01.116

    10. [10]

      PARK H J, PARK K H, JEON J K, KIM J, RYOO R, JEONG K E, PARK S H, PARK Y K. Production of phenolics and aromatics by pyrolysis of miscanthus[J]. Fuel, 2012,97:379-384. doi: 10.1016/j.fuel.2012.01.075

    11. [11]

      TAARNING E, OSMUNDSEN C M, YANG X B, VOSS B, ANDERSEN S I, CHRISTENSEN C H. Zeolite-catalyzed biomass conversion to fuels and chemicals[J]. Energy Environ Sci, 2011,4(3):793-804. doi: 10.1039/C004518G

    12. [12]

      GAYUBO A G, AGUAYO A T, ATUTXA A, AGUADO R, OLAZAR M, BILBAO J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. Aldehydes, ketones, and acids[J]. Ind Eng Chem Res, 2004,43(11):2619-2626. doi: 10.1021/ie030792g

    13. [13]

      AHO A, KUMAR N, ERÄNEN K, SALMI T, HUPA M, MURZIN D Y. Catalytic pyrolysis of woody biomass in a fluidized bed reactor:Influence of the zeolite structure[J]. Fuel, 2008,87(12):2493-2501. doi: 10.1016/j.fuel.2008.02.015

    14. [14]

      LU Q, WANG Z, DONG C Q, ZHANG Z F, ZHANG Y, YANG Y P, ZHU X F. Selective fast pyrolysis of biomass impregnated with ZnCl2:Furfural production together with acetic acid and activated carbon as by-products[J]. J Anal Appl Pyrolysis, 2011,91(1):273-279. doi: 10.1016/j.jaap.2011.03.002

    15. [15]

      LI Zhi-he, YI Wei-ming, Gao Qiao-chun, Li Yong-jun. Effects of chem ical com ponents and tem perature on the volatility of biomass in flash pyrolysis[J]. J Fuel Chem Technol, 2005,33(4):502-505. doi: 10.3969/j.issn.0253-2409.2005.04.025 

    16. [16]

      SONG chun-cai, HU Hao-quan. Catalytic pyrolysis and kinetics of agricultural stalks and their main components[J]. Coal Convers, 2003,26(3):91-97. doi: 10.3969/j.issn.1004-4248.2003.03.020

    17. [17]

      ZHANG Zhi-bo. Research on catalytic fast pyrolysis of biomass to produce value-added chemicals[D]. Beijing: North China Electric Power University, 2016. 

    18. [18]

      CHAI M Y, HE Y F, NISHU , LIU R H. Effect of fractional condensers on characteristics, compounds distribution and phenols selection of bio-oil from pine sawdust fast pyrolysis[J]. J Energy Inst, 2020,93(2):811-821. doi: 10.1016/j.joei.2019.05.001

    19. [19]

      CHEN Deng-yu, ZHU Xi-feng. Thermal reaction mechanism of biomass and determination of activation energy II.Pyrolysis section[J]. J Fuel Chem Technol, 2011,39(9):670-674. doi: 10.3969/j.issn.0253-2409.2011.09.006 

    20. [20]

      GONG X M, WANG Z, DENG S, LI S G, SONG W L, LIN W G. Impact of the temperature, pressure, and particle size on tar composition from pyrolysis of three ranks of Chinese coals[J]. Energy Fuels, 2014,28:4942-4948. doi: 10.1021/ef500986h

    21. [21]

      CARLSON T R, JAE J, LIN Y C, TOMPSETT G A, HUBER G W. Catalytic fast pyrolysis of glucose with HZSM-5:The combined homogeneous and heterogeneous reactions[J]. J Catal, 2010,270(1):110-124. doi: 10.1016/j.jcat.2009.12.013

    22. [22]

      XU X, JIANG E C. "BTX" from guaiacol HDO under atmospheric pressure:Effect of support and carbon deposition[J]. Energy Fuels, 2017,31(3):2855-2864. doi: 10.1021/acs.energyfuels.6b02700

  • 加载中
    1. [1]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    2. [2]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(6)
  • Abstract views(673)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return