Citation: GONG Qing, LI Jun-hui, XIANG Hao, ZHAO Guo-qing, ZHU Zhi-rong. Study on the high performance catalyst for toluene alkylation to xylene[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(7): 806-813. shu

Study on the high performance catalyst for toluene alkylation to xylene

Figures(4)

  • By comparing the catalytic performance of toluene methanol alkylation over zeolites with different pore structure, it was found that the effective matching of the zeolite pore size with the molecular dynamics size of the target aromatic compounds and the constrained management of the reaction path by pore confinement effect are essential for achieving high performance of alkylation. Combined with XRD, BET, NH3-TPD and SEM characterization, it has been confirmed that ZSM-5 with Si/Al ratio of 60 modified by successively loading La2O3 and P2O5 had better hydrothermal stability of the frameworks and most of the strong acidic sites on its internal and external surface were selectively eliminated while the weak and medium strong acidic sites were remained as the active sites of alkylation. The obtained MAT-HZSM-5 exhibited high methanol alkylation efficiency and good stability under nitrogen reaction atmosphere. There was no obvious deactivation during 500 h reaction. The conversion of toluene was maintained at 35%-38%, the selectivity of xylene was 60%-77%, and the methanol alkylation efficiency was higher than 90%.
  • 加载中
    1. [1]

      JI Y J, ZHANG B, XU L, WU H H, PENG H G, CHEN L, LIU Y M, WU P. Core/shell-structured Al-MWW@B-MWW zeolites for shape-selective toluene disproportionation to para-xylene[J]. J Catal, 2011,283(2):168-177.  

    2. [2]

      ZHANG P, TAN L, YANG G, TSUBAKI N. One-pass selective conversion of syngas to para-xylene[J]. Chem Sci, 2017,8(12):7941-7946. doi: 10.1039/C7SC03427J

    3. [3]

      PANG Wei-wei, GU Hao-hui. Comparison of alkylation of benzene/toluene with methanol/syngas in ZSM-5 system[J]. Nat Gas Ind, 2018,43(1):67-71. doi: 10.3969/j.issn.1001-9219.2018.01.012

    4. [4]

      LI J H, JI W X, LIU M, ZHAO G Q, JIA W Z, ZHU Z R. New insight into the alkylation-efficiency of methanol with toluene over ZSM-5:Microporous diffusibility significantly affects reacting-pathways[J]. Microporous Mesoporous Mater, 2019,282:252-259. doi: 10.1016/j.micromeso.2019.03.040

    5. [5]

      ZHOU J, LIU Z C, WANG Y D, KONG D J, XIE Z K. Shape selective catalysis in methylation of toluene:Development, challenges and perspectives[J]. Front Chem Sci Eng, 2018,12(1):103-112.  

    6. [6]

      ZHAO Y, TAN W, WU H Y, ZHANG A F, LIU M, LI G M, WANG XS, SONG C S, GUO X W. Effect of Pt on stability of nano-scale ZSM-5 catalyst for toluene alkylation with methanol into p-xylene[J]. Catal Today, 2011,160(1):179-183.  

    7. [7]

      LI J H, XIANG H, LIU M, WANG Q L, ZHU Z R, HU Z H. Deactivation mechanism of two typical shape-selective HZSM-5 catalysts for alkylation of toluene with methanol[J]. Catal Sci Technol, 2014,4(8):2639-2649. doi: 10.1039/c4cy00095a

    8. [8]

      OLSBYE U, SVELLE S, BJØRGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons:How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed, 2012,51(24):5810-5831. doi: 10.1002/anie.201103657

    9. [9]

      GENG Rui, GONG Mei, WANG Hao, NIU Xian-jun, FAN Wei-bing, WANG Jian-guo, QIN Zhang-feng. Study on catalytic performance of ten-membered ring molecular sieves in aromatization of methanol[J]. J Fuel Chem Technol, 2014,42(9):1119-1127. doi: 10.3969/j.issn.0253-2409.2014.09.013 

    10. [10]

      LU P, FEI Z Y, LI L, FENG X Z, JI J, DING W P, CHEN Y, YANG W M, XIE Z K. Effects of controlled SiO2 deposition and phosphorus and nickel doping on surface acidity and diffusivity of medium and small sized HZSM-5 for para-selective alkylation of toluene by methanol[J]. Appl Catal A:Gen, 2013,453:302-309. doi: 10.1016/j.apcata.2012.12.042

    11. [11]

      YOUNG L B, BUTTER S A, KAEDING W W. Shape selective reactions with zeolite catalysts:Ⅲ. Selectivity in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts[J]. J Catal, 1982,76(2):418-432. doi: 10.1016/0021-9517(82)90271-8

    12. [12]

      TANG Jian-yuan, ZHAO Cheng-wen, LI Yong-gang, XING Hai-jun, LOU Bao-hua, NING Chun-li, ZHANG Chun-lei. Structural changes of hydrothermal treatment HZSM-5 molecular sieve and its effect on the catalytic performance of p-toluene methanol alkylation to p-xylene[J]. J Fudan Univ:Nat Sci Ed, 2015,54(4):516-521.  

    13. [13]

      ZOU Wei, HUANG Pian-pian, GUAN Hui, QI Xiao-lan, KONG De-jin, LE Ying-hong. Selective alkylation performance of toluene methanol on silicone oil-nitrate complex modified ZSM-5 catalyst[J]. Ind Catal, 2014,22(9):671-675. doi: 10.3969/j.issn.1008-1143.2014.09.005

    14. [14]

      TAN Wei, HOU Ke-ke, LIU Min, LI Wen-hui, LIU Hai-ou, SONG Chun-shan, GUO Xin-wen. Effect of nickel oxide modified ZSM-5 catalyst on the stability of selective methylation of toluene and methanol[J]. Acta Pet Sin (Pet Process Sect), 2015,31(2):503-522.  

    15. [15]

      LIU Hong-xing, XIE Zai-ku, ZHANG Cheng-fang, CHEN Qing-ling. Progress in HSAPO-34 molecular sieve research[J]. Ind Catal, 2002,10(4):49-54. doi: 10.3969/j.issn.1008-1143.2002.04.011

    16. [16]

      SUN Xiu-liang, HUANG Chong-pin, ZHANG Jie, CHEN Biao-hua. Distribution of Al in beta zeolite and acidity of Brønsted acid[J]. Acta Phys-Chim Sin, 2009,25(6):1136-1142. doi: 10.3866/PKU.WHXB20090630

    17. [17]

      YUAN Shu-ping, DUAN Yun-bo, WANG Jian-guo, LI Yong-wang, JIAO Hai-jun. Quantum chemistry study on adsorption of pyridine in H-MOR molecular sieves[J]. Chin J Catal, 2006,27(8):664-670. doi: 10.3321/j.issn:0253-9837.2006.08.006

    18. [18]

      LI J H, MENG Y T, HU C, XIANG H, CUI L H, HAO Z X, ZHU Z R. Controlling reactive pathways in complex one-pot reactions using a novel shape-selective catalyst with multifunctional active-sites[J]. Chem Commun, 2018,54(83):11689-11692. doi: 10.1039/C8CC06087H

    19. [19]

      ZHANG Jin-gui, QIAN Wei-zhong, TANG Xiao-pin, SHEN Kui, WANG Tong, HUANG Xiao-fan, WEI fei. Effect of catalyst acidity on dealkylation, alkylation and isomerization in methanol aromatization[J]. Acta Phys-Chim Sin, 2013,29(6):1281-1288. doi: 10.3866/PKU.WHXB201304101

    20. [20]

      CHEN W H, TSAI T C, JONG S J, ZHAO Q, WANG I, LEE H K, LIU S B, TSAI C T. Effects of surface modification on coking, deactivation and para-selectivity of H-ZSM-5 zeolites during ethylbenzene disproportionation[J]. J Mol Catal A:Chem, 2002,181(1/2):41-55.  

    21. [21]

      ZHU Z R, XIE Z K, CHEN Q L, YANG W M, LI W, LI C. CLD modification of surface acidity of ZSM-5 and its effect on shape selective catalytic performance[J]. J Mol Catal, 2007,21(1):79-81.

    22. [22]

      LI J H, TONG K, XI Z W, YUAN Y, HU Z H, ZHU Z R. Highly-efficient conversion of methanol to p-xylene over shape-selective Mg-Zn-Si-HZSM-5 catalyst with fine modification of pore-opening and acidic properties[J]. Catal Sci Technol, 2016,6(13):4802-4813. doi: 10.1039/C5CY01979F

    23. [23]

      ZHANG Zhi-pin, ZHAO Yan, WU Hong-yu, TAN Wei, WANG Xiang-sheng, GUO Xin-wen. Alkylation of toluene with methanol on modified nano-HZSM-5 catalysts[J]. Chin J Catal, 2011,32(7):1280-1287.  

    24. [24]

      GHIACI M, ABBASPUR A, ARSHADI M, AGHABARARI B. Internal versus external surface active sites in ZSM-5 zeolite Part 2:Toluene alkylation with methanol and 2-propanol catalyzed by modified and unmodified H3PO4/ZSM-5[J]. Appl Catal A:Gen, 2007,316(1):32-46. doi: 10.1016/j.apcata.2006.09.014

    25. [25]

      LI Meng-meng, DONG Xiu-qin, ZHANG Min-hua. Structure and acidity changes of P modified ZSM-5 molecular sieve[J]. Comput Appl Chem, 2012,29(2):245-248. doi: 10.3969/j.issn.1001-4160.2012.02.028

    26. [26]

      LI Yan-feng, ZHU Ji-qin, LIU Hui, WANG Peng, TIAN Hui-ping. Lanthanum modification improves the hydrothermal stability of ZSM-5 molecular sieve[J]. Acta Phys-Chin Sin, 2011,27(1):52-58. doi: 10.3866/PKU.WHXB20110130

    27. [27]

      YU Shan-qing, TIAN Hui-ping, DAI Zhen-yu, LING Jun. Mechanisms of La or Ce enhancing structural stability of Y-type molecular sieves[J]. Chin J Catal, 2010,31(10):1263-1270.  

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    6. [6]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    7. [7]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    8. [8]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    9. [9]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    10. [10]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    13. [13]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    14. [14]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    17. [17]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    18. [18]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    19. [19]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    20. [20]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

Metrics
  • PDF Downloads(9)
  • Abstract views(946)
  • HTML views(185)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return