Citation: ZHANG Chun-xiu, SU Sheng, CHEN Yi-feng, LIU Tao, YIN Zi-jun, WANG Zhong-hui, WANG Yi, HU Song, ZHAO Zhi-gang, XIANG Jun. Study on the effects of steam on the precipitation characteristics of sodium during coal thermal conversion[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(7): 769-775. shu

Study on the effects of steam on the precipitation characteristics of sodium during coal thermal conversion

  • Corresponding author: SU Sheng, susheng@mail.hust.edu.cn
  • Received Date: 18 May 2020
    Revised Date: 28 June 2020

    Fund Project: National Key R & D Program of China 2017YFB0601802National Natural Science Foundation of China U1910214The project was supported by National Key R & D Program of China (2017YFB0601802) and National Natural Science Foundation of China (U1910214)

Figures(6)

  • The char samples were prepared from the coal impregnated with NaCl under different steam concentrations and temperatures. The mode of occurrence of sodium and the contents of sodium in different chars with the same conversion ratio were analyzed by inductively coupled plasma mass spectrometry. The effects of steam and temperature on the migration and transformation of sodium in the coal during the thermal conversion processes were studied. The results showed that the increase of steam concentration enhanced the release of water-soluble sodium during the thermal conversion of coal and promoted the transformation of water-soluble sodium into ammonium acetate, hydrochloric acid and insoluble sodium. As a result, the release of sodium was suppressed to a certain extent. It was also observed that increasing the reaction temperature could promote the release of water-soluble sodium and promote the transformation of water-soluble sodium to the other soluble forms of sodium. The evolution of char structure was an important influence on the release of sodium. The results revealed that the degrees of char condensation increased with the steam gasification reaction. The formation of large aromatic ring structures from the condensation of the small aromatic rings played the important role in the encapsulation of sodium, which would inhibit the release of sodium.
  • 加载中
    1. [1]

      ZHANG H, YU K, ZHU Z. Steam gasification reactivity of a high-sodium coal fly ash obtained from a pilot scale CFB gasifier[J]. J Coal Sci Technol, 2018,5(2):244-252. doi: 10.1007/s40789-018-0192-7

    2. [2]

      XU L, LIU H, FANG H, GAO J, WU S. Effects of various inorganic sodium salts present in Zhundong coal on the char characteristics[J]. Fuel, 2017,203:120-127. doi: 10.1016/j.fuel.2017.04.106

    3. [3]

      YANG S, SONG G, NA Y, SONG W, QI X, YANG Z. Transformation characteristics of Na and K in high alkali residual carbon during circulating fluidized bed combustion[J]. J Energy Inst, 2019,92(1):62-73.  

    4. [4]

      LI R, CHEN Q, ZHANG H. Detailed investigation on sodium (Na) species release and transformation mechanism during pyrolysis and char gasification of high-Na Zhundong coal[J]. Energy Fuels, 2017,31(6):5902-5912. doi: 10.1021/acs.energyfuels.7b00410

    5. [5]

      WANG Z, WANG L, LIN J, WANG M, CHANG L. The influence of the addition of sodium on the transformation of alkali and alkaline-earth metals during oxy-fuel combustion[J]. J Energy Inst, 2018,91(4):502-512. doi: 10.1016/j.joei.2017.04.007

    6. [6]

      WEI Xiao-fang, LIU Tie-feng, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Transformation of Na in Australian high-sodium coal during pyrolysis[J]. J Fuel Chem Technol, 2010,38(2):144-148.  

    7. [7]

      LI X, LIU P, GAO M, MENG X, CHU R, WU G, BAI Z, LI W. Influences of sodium species with different occurrence modes on the thermal behaviors and gas evolution during pyrolysis of a sodium-rich Zhundong subbituminous coal[J]. J Energy Inst, 2018,91(5):695-703. doi: 10.1016/j.joei.2017.05.011

    8. [8]

      ZHANG H, GUO X, ZHU Z. Effect of temperature on gasification performance and sodium transformation of Zhundong coal[J]. Fuel, 2017,189:301-311. doi: 10.1016/j.fuel.2016.10.097

    9. [9]

      SCHVRMANN H, MONKHOUSE P B, UNTERBERGER S, HEIN K R G. In situ parametric study of alkali release in pulverized coal combustion:Effects of operating conditions and gas composition[J]. Proc Combust Inst, 2007,31(2):1913-1920.  

    10. [10]

      WANG L, MAO H, WANG Z, LIN J, WANG M, CHANG L. Transformation of alkali and alkaline-earth metals during coal oxy-fuel combustion in the presence of SO2 and H2O[J]. J Energy Chem, 2015,24(4):381-387.  

    11. [11]

      WU H, HAYASHI J, CHIBA T, TAKARADA T, LI C. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅴ. Combined effects of Na concentration and char structure on char reactivity[J]. Fuel, 2004,83(1):23-30.  

    12. [12]

      LI X, HAYASHI J, LI C. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅷ. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel, 2006,85(10/11):1509-1217.  

    13. [13]

      TANG H, XU J, DAI Z, ZHANG L, SUN Y, LIU W, MOHAMED E M, SU S, HU S, WANG Y, XU K, ZHANG A, XIANG J. Functional mechanism of inorganic sodium on the structure and reactivity of Zhundong chars during pyrolysis[J]. Energy Fuels, 2017,31(10):10812-10821. doi: 10.1021/acs.energyfuels.7b02253

    14. [14]

      ZHANG Shou-yu, CHEN Chuan, SHI Da-zhong, LV Jun-fu, WANG Jian, GUO Xi, DONG Ai-xia, XIONG Shao-wu. Situation of combustion utilization of high sodium coal[J]. Proc CSEE, 2013,33(5):1-12.  

    15. [15]

      SONG Wei-jian, SONG Guo-liang, QI Xiao-bin, LV Qing-gang. Sodium transformation law of Zhundong coal during gasification[J]. J China Coal Soc, 2016,41(2):490-496.  

    16. [16]

      WU H, QUYN D M, LI C. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅲ. The importance of the interactions between volatiles and char at high temperature[J]. Fuel, 2002,81(8):1033-1039. doi: 10.1016/S0016-2361(02)00011-X

    17. [17]

      ZHANG Jun, HAN Chun-li, YAN Zheng, YU Gang, LIU Kun-lei, XU Yi-qian. Study on the behavior of sodium in coal during the initial combustion[J]. J Fuel Chem Technol, 2001,29(1):49-53.  

    18. [18]

      LV Hai-liang, CHEN Hao-kan, LI Wen, LI Bao-qing. Study on occurrence forms of several trace pollution elements in yima Coal[J]. J Fuel Chem Technol, 2003,31(1):31-34.  

    19. [19]

      XU L, LIU H, ZHAO D, CAO Q, GAO J, WU S. Transformation mechanism of sodium during pyrolysis of Zhundong coal[J]. Fuel, 2018,233:29-36. doi: 10.1016/j.fuel.2018.06.038

    20. [20]

      XU J, SU S, SUN Z, SI N, QING M, LIU L, HU S, WANG Y, XIANG J. Effects of H2O gasification reaction on the characteristics of chars under oxy-fuel combustion conditions with wet recycle[J]. Energy Fuels, 2016,30(11):9071-9079. doi: 10.1021/acs.energyfuels.6b01725

    21. [21]

      KOSMINSKI A, ROSS D P, AGNEW J B. Transformations of sodium during gasification of low-rank coal[J]. Fuel Process Technol, 2006,87(11):943-952. doi: 10.1016/j.fuproc.2005.06.006

  • 加载中
    1. [1]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    3. [3]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    12. [12]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    13. [13]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    16. [16]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    17. [17]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    18. [18]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    19. [19]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    20. [20]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

Metrics
  • PDF Downloads(5)
  • Abstract views(927)
  • HTML views(166)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return