Citation: Liu Shuang, Liu Lantao. Advances in Carbon Capture and Sequestration of PCPs Synthesized by Amine-Functionalization Ligands[J]. Chemistry, ;2019, 82(2): 108-113. shu

Advances in Carbon Capture and Sequestration of PCPs Synthesized by Amine-Functionalization Ligands

  • Corresponding author: Liu Lantao, liult05@iccas.ac.cn
  • Received Date: 15 August 2018
    Accepted Date: 18 October 2018

Figures(1)

  • In the past decade, porous coordination polymers (PCPs) have attracted significant attention in the area of selective adsorption & separation of small molecules due to their unique crystal structure with the tunable pore size, pore shape and chemical functionalization. Environmental problems are becoming more and more serious. The excellent selective adsorption performance of amine functionalized PCPs on CO2 makes it have good application potential in treatment of carbon dioxide from flue gas. This paper reviews the representative work of PCPs containing terminal amino ligands for CO2 capture and storage, and analyzes the problems and development directions.
  • 加载中
    1. [1]

      Q Wang, J Luo, Z Zhong et al. Energy. Environ. Sci., 2011, 4(1): 42~55. 

    2. [2]

      E S Sanz-Pérez, C R Murdock, S A Didas et al. Chem. Rev., 2016, 116(19): 11840~11876. 

    3. [3]

      P Luis. Desalination, 2016, 380: 93~99. 

    4. [4]

      O Cheung, N Hedin. RSC Adv., 2014, 4(28): 14480~14494. 

    5. [5]

      N Konduru, P Lindner, N M Assaf-Anad. AlChE J. 2007, 53(12): 3137~3143.

    6. [6]

      H Y Zhao, X N Luo, H J Zhang et al. Greenh. Gases, 2018, 8(1): 11~36. 

    7. [7]

    8. [8]

      C Chen, S Zhang, K H Row et al. J. Energy Chem., 2017, 26(5): 868~880. 

    9. [9]

      D S Ahmed, G A El-Hiti, E Yousif et al. J. Polym. Res., 2018, 25(3): 75. 

    10. [10]

      S T Meek, J A Greathouse, M D Allendorf. Adv. Mater., 2011, 23(2): 249~267. 

    11. [11]

      H Furukawa, K E Cordova, M O'Keeffe et al. Science, 2013, 341(6149): 974.

    12. [12]

      D M D'Alessandro, B Smit, J R Long. Angew. Chem. Int. Ed., 2010, 49(35): 6058~6082. 

    13. [13]

      B Li, H Wang, B Chen. Chem. Asian J., 2014, 9(6): 1474~1498. 

    14. [14]

      X Lu, D Jin, S Wei et al. J. Mater. Chem. A, 2015, 3(23): 12118~12132. 

    15. [15]

      Y Belmabkhout, V Guillerm, M Eddaoudi. Chem. Eng. J., 2016, 296: 386~397. 

    16. [16]

      N Stock, S Biswas. Chem. Rev., 2012, 112(2): 933~969. 

    17. [17]

      M Oschatz, M Antonietti. Energy. Environ. Sci., 2018, 11(1): 57~70. 

    18. [18]

      Y Zhao, X Liu, Y Han. RSC Adv., 2015, 5(38): 30310~30330. 

    19. [19]

      J R Li, J M Yu, W G Lu et al. Nat. Commun., 2013, 4: 1538. 

    20. [20]

      Y-S Bae, R Q Snurr. Angew. Chem. Int. Ed., 2011, 50(49): 11586~11596. 

    21. [21]

      C A Trickett, A Helal, B A Al-Maythalony et al. Nat. Rev. Mater., 2017, 2(8): 17045. 

    22. [22]

      D Andirova, C F Cogswell, Y Lei et al. Micropor. Mesopor. Mater., 2016, 219: 276~305. 

    23. [23]

      Y Lin, C Kong, L Chen. RSC Adv., 2016, 6(39): 32598~32614. 

    24. [24]

      J G Vitillo, M Savonnet, G Ricchiardi et al. ChemSusChem., 2011, 4(9): 1281~1290. 

    25. [25]

      K D Vogiatzis, W Klopper, J Friedrich. J. Chem. Theory Comput., 2015, 11(4): 1574~1584. 

    26. [26]

      S Ding, Q Dong, J Hu et al. Chem. Commun., 2016, 52(63): 9757~9760. 

    27. [27]

      S Couck, J F M Denayer, G V Baron et al. J. Am. Chem. Soc., 2009, 131(18): 6326~6327. 

    28. [28]

      B Arstad, H Fjellvag, K O Kongshaug et al. Adsorp. J. Inter. Adsorp. Soc., 2008, 14(6): 755~762. 

    29. [29]

      P Serra-Crespo, E V Ramos-Fernandez, J Gascon et al. Chem. Mater., 2011, 23(10): 2565~2572. 

    30. [30]

      Y Fu, D Sun, Y Chen et al. Angew. Chem. Int. Ed., 2012, 51(14): 3364~3367. 

    31. [31]

      X Si, C Jiao, F Li et al. Energy. Environ. Sci., 2011, 4(11): 4522~4527. 

    32. [32]

      E Papazoi, A Douvali, S Rapti et al. Inorg. Chem. Front., 2017, 4(3): 530~536. 

    33. [33]

      G E Cmarik, M Kim, S M Cohen et al. Langmuir, 2012, 28(44): 15606~15613. 

    34. [34]

      K Peikert, F Hoffmann, M Froeba. Chem. Commun., 2012, 48(91): 11196~11198. 

    35. [35]

      D De, T K Pal, S Neogi et al. Chem. Eur. J., 2016, 22(10): 3387~3396. 

    36. [36]

      H He, F Sun, B Aguila et al. J. Mater. Chem. A, 2016, 4(39): 15240~15246. 

    37. [37]

      J P Zhang, A X Zhu, R B Lin et al. Adv. Mater., 2011, 23(10): 1268~1271. 

    38. [38]

      R B Lin, D Chen, Y Y Lin et al. Inorg. Chem., 2012, 51(18): 9950~9955. 

    39. [39]

      T M McDonald, W R Lee, J A Mason et al. J. Am. Chem. Soc., 2012, 134(16): 7056~7065. 

    40. [40]

      T M McDonald, J A Mason, X Q Kong et al. Nature, 2015, 519(7543): 303~308. 

    41. [41]

      O M Yaghi, M O'Keeffe, N W Ockwig et al. Nature, 2003, 423(6941): 705~714. 

    42. [42]

      G Ortiz, S Brandes, Y Rousselin et al. Chem. Eur. J., 2011, 17(24): 6689~6695. 

    43. [43]

      H Feuchter, G Ortiz, Y Rousselin et al. Cryst. Growth Design, 2017, 17(7): 3665~3676. 

    44. [44]

      A Das, D M D'Alessandro. Cryst. Eng. Commun., 2015, 17(4): 706~718. 

    45. [45]

      Y Lin, C Kong, L Chen. RSC Adv., 2016, 6(39): 32598~32614. 

    46. [46]

      T Ahnfeldt, N Guillou, D Gunzelmann et al. Angew. Chem. Int. Ed., 2009, 48(28): 5163~5166. 

    47. [47]

      J H Cavka, S Jakobsen, U Olsbye et al. J. Am. Chem. Soc., 2008, 130(42): 13850~13851. 

    48. [48]

      S Parshamoni, S Sanda, H S Jena et al. Chem. Asian J., 2015, 10(3): 653~660. 

    49. [49]

      R Haldar, S K Reddy, V M Suresh et al. Chem. Eur. J., 2014, 20(15): 4347~4356. 

    50. [50]

      S S Y Chui, S M F Lo, J P H Charmant et al. Science, 1999, 283(5405): 1148~1150. 

    51. [51]

      K P Gomora-Figueroa, J A Mason, M I Gonzalez et al. Inorg. Chem. 2017, 56(8): 4308~4316.

    52. [52]

      K S Park, Z Ni, A P Cote et al. PNAS, 2006, 103(27): 10186~10191. 

    53. [53]

      X C Huang, Y Y Lin, J P Zhang et al. Angew. Chem., 2006, 118(10): 1587~1589. 

    54. [54]

      T Islamoglu, S Goswami, Z Li et al. Acc. Chem. Res., 2017, 50(4): 805~813. 

    55. [55]

      A Schneemann, V Bon, I Schwedler et al. Chem. Soc. Rev., 2014, 43(16): 6062~6096. 

    56. [56]

      S Krause, V Bon, I Senkovska et al. Nature, 2016, 532(7599): 348~352. 

  • 加载中
    1. [1]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    4. [4]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    5. [5]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    6. [6]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    7. [7]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    17. [17]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    18. [18]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    19. [19]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    20. [20]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

Metrics
  • PDF Downloads(5)
  • Abstract views(361)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return