Citation: Xu Rong, Feng Ailing, Wang Yanni, Xia Houping. Methods for Optimizing Luminescence of Rare Earth Upconversion Nanoparticles[J]. Chemistry, ;2018, 81(12): 1059-1071. shu

Methods for Optimizing Luminescence of Rare Earth Upconversion Nanoparticles

  • Corresponding author: Feng Ailing, ailing@mail.xjtu.edu.cn
  • Received Date: 6 June 2018
    Accepted Date: 1 September 2018

Figures(7)

  • Rare earth upconversion nanoparticles (UCNPs), which can convert visible light into near infrared light, have excellent luminescence properties, stable chemical properties, and can avoid self-fluorescence interference. Therefore, they can be widely used in biomedical fields. However, the low luminescence efficiency of UCNPs restricts its further development. In this paper, several methods for optimizing the luminescence of rare earth upconversion nanoparticles are reviewed, including adjusting matrix and doping ions, co-doping transition metal ions with lanthanide ions, introducing the synergistic sensitizers to reduce the thermal effect, and synergistic effect of organic dyes and UCNPs, metal surface plasmon resonance enhancement method, etc. This review discusses the latest research progress of the above methods, summarizes the problems existing in these methods, and points out the research and development focus on upconversion luminescence field. One is to analyze the mechanism of various optimized luminescence methods, and put forward a more complete and clear theoretical system. The other is to explore UCNPs which are degradable by organisms, in order to minimize the side effects.
  • 加载中
    1. [1]

      J J Peng, A Samanta, X Zeng et al. Angew. Chem. Int. Ed., 2017, 56(15):4165~4169. 

    2. [2]

      X Zhu, Q Su, W Feng et al. Chem. Soc. Rev., 2017, 46(4):1025~1039. 

    3. [3]

      F K Chame, M M Ojeda, G F Gonzalez et al. J. Alloys Compd., 2018, 744:683~690. 

    4. [4]

      Z Shi, Y Duan, X Zhu et al. Nanotechnology, 2018, 29(9):1~23.

    5. [5]

      D Yang, C Cao, W Feng et al. J. Rare Earths, 2018, 36(2):113~118. 

    6. [6]

      G Chen, J Damasco, H Qiu et al. Nano Lett., 2015, 15(11):7400~7407. 

    7. [7]

      G Chen, T Y Ohulchanskyy, R Kumar et al. ACS Nano, 2010, 4(6):3163~3168. 

    8. [8]

      P Gerner, C Reinhard, H U Güdel. Chem. Eur. J., 2004, 10(19):4735~4741. 

    9. [9]

      L L Liang, X J Xie, D T B Loong et al. Chem. Eur. J., 2016, 22(31):10801~10807. 

    10. [10]

      W Q Zou, C Visser, J A Maduro et al. Nat. Photonics, 2012, 6(8):560~564. 

    11. [11]

      J H Lin, H Y Liou, C D Wang et al. ACS Photonics, 2015, 2(4):530~536. 

    12. [12]

      K Binnemans. Chem. Rev., 2009, 109(9):4283~4374. 

    13. [13]

      F Auzel. Chem. Rev., 2004, 104(1):139~173. 

    14. [14]

      D M Yang, Y L Dai, J H Liu et al. Biomaterials, 2014, 35(6):2011~2023. 

    15. [15]

      G Chen, H Qiu, P N Prasad et al. Chem. Rev., 2014, 114(10):5161~5214. 

    16. [16]

      Y X Liu, W A Pisarski, S J Zeng et al. Opt. Express, 2009, 17(11):9089~9098. 

    17. [17]

      J W Stouwdam, F Van Veggel. Nano Lett., 2002, 2(7):733~737. 

    18. [18]

      G S Yi, G M Chow. J. Mater. Chem., 2005, 15(41):4460~4464. 

    19. [19]

      W X Que, S Buddhudu, Y Zhou et al. Mater. Sci. Eng. C, 2001, 16(1-2):51~54. 

    20. [20]

      G S Yi, G M Chow. Adv. Funct. Mater., 2006, 16(18):2324~2329. 

    21. [21]

      J Wang, R Deng, M A Macdonald et al. Nat. Mater., 2013, 13:157~162.

    22. [22]

      F Wang, X G Liu. Chem. Soc. Rev., 2009, 38(4):976~989. 

    23. [23]

      M Haase, H Schäfer. Angew. Chem. Int. Ed., 2011, 50(26):5808~5829. 

    24. [24]

      J Wang, R R Deng, M A Macdonald et al. Nat. Mater., 2014, 13(2):157~162. 

    25. [25]

      S Heer, K Kömpe, H U Güdel et al. Adv. Mater., 2004, 16(23/24):2102~2105.

    26. [26]

      R Martín-Rodríguez, R Valiente, M Bettinelli. Appl. Phys. Lett., 2009, 95(9):091913. 

    27. [27]

      S Ye, Y J Li, D C Yu et al. J. Mater. Chem., 2011, 21(11):3735~3739. 

    28. [28]

      V Ntziachristos, J Ripoll, L V Wang et al. Nat. Biotechnol., 2005, 23(3):313~320. 

    29. [29]

      M K G Jayakumar, N M Idris, K Huang et al. Nanoscale, 2014, 6(15):8441~8443. 

    30. [30]

      J Shen, G Chen, A M Vu et al. Adv. Op. Mater., 2013, 1(9):644~650. 

    31. [31]

      Q Zhan, J Qian, H Liang et al. ACS Nano, 2011, 5(5):3744~3757. 

    32. [32]

      D Wang, B Xue, X Kong et al. Nanoscale, 2015, 7(1):190~197. 

    33. [33]

      G Bernd, S Michael, R Walter et al. J. Cardiovasc. Pharm., 2005, 44(Supplement 1):S30~S33.

    34. [34]

      R Hong, J M Fernandez, H Nakade et al. Chem. Commun., 2006, (22):2347~2349. 

    35. [35]

      X Wu, H Lee, O Bilsel et al. Nanoscale, 2015, 7(44):18424~18428. 

    36. [36]

    37. [37]

      X Liu, D Y Lei. Sci. Rep., 2015, 5:15235. 

    38. [38]

      W Xu, S Xu, Y S Zhu et al. Nanoscale, 2012, 4(22):6971~6973. 

    39. [39]

      W Xu, Y Zhu, X Chen et al. Nano Res., 2013, 6(11):795~807. 

    40. [40]

      G Y Lee, K Jung, H S Jang et al. Nanoscale, 2016, 8(4):2071~2080. 

    41. [41]

      D Wei, L Sudheendra, Z Jiangbo et al. Nanotechnology, 2011, 22(32):325604. 

    42. [42]

      X Chen, D L Zhou, W Xu et al. Sci. Rep., 2017, 7:41079. 

    43. [43]

      S Xu, Y Zhu, W Xu et al. Appl. Phys. Express, 2012, 5(10):102701. 

    44. [44]

      W Xu, X L Min, X Chen et al. Sci. Rep., 2014, 4:5087.

    45. [45]

      M Saboktakin, X C Ye, U K Chettiar et al. ACS Nano, 2013, 7(8):7186~7192. 

    46. [46]

      Q C Sun, H Mundoor, J C Ribot et al. Nano Lett., 2014, 14(1):101~106. 

    47. [47]

      D Lu, S K Cho, S Ahn et al. ACS Nano, 2014, 8(8):7780~7792. 

    48. [48]

      S J Kwon, G Y Lee, K Jung et al. Adv. Mater., 2016, 28(36):7899~7909. 

    49. [49]

      A El Halawany, S He, H Hodaei et al. Opt. Express, 2016, 24(13):13999~14009. 

    50. [50]

      N Mauser, A Hartschuh. Chem. Soc. Rev., 2014, 43(4):1248~1262. 

    51. [51]

      N Mauser, D Piatkowski, T Mancabelli et al. ACS Nano, 2015, 9(4):3617~3626. 

    52. [52]

      G X Chen, C J Ding, E Wu et al. J. Phys. Chem. C, 2015, 119(39):22604~22610. 

    53. [53]

      A L Feng, M Lin, L M Tian et al. RSC Adv., 2015, 5(94):76825~76835. 

    54. [54]

      G Y Chen, H Agren, T Y Ohulchanskyy et al. Chem. Soc. Rev., 2015, 44(6):1680~1713. 

    55. [55]

      P Huang, W Zheng, S Y Zhou et al. Angew. Chem. Int. Ed., 2014, 53(5):1252~1257. 

    56. [56]

      J Ouyang, D G Yin, X Z Cao et al. Dalton Transac., 2014, 43(37):14001~14008. 

    57. [57]

      Y Zhong, G Tian, Z Gu et al. Adv. Mater., 2014, 26(18):2831~2837. 

    58. [58]

    59. [59]

      N J J Johnson, S He, V A Nguyen Huu et al. ACS Nano, 2016, 10(9):8299~8307. 

    60. [60]

    61. [61]

      N M Idris, M K Gnanasammandhan, J Zhang et al. Nat. Med., 2012, 18(10):1580~1585. 

    62. [62]

      X Ding, J H Liu, D P Liu et al. Nano Res., 2017, 10(10):3434~3446. 

    63. [63]

      Y Gao, X Zhu, Y Zhang et al. Rsc Adv., 2017, 7(50):31588~31596. 

    64. [64]

      T C Zhao, P Y Wang, Q Li et al. Angew. Chem. Int. Ed., 2018, 57(10):2611~2615. 

    65. [65]

      B Zhao, Y Li. Talanta, 2018, 179:478~484. 

    66. [66]

      P Du, E J Kim, J S Yu. Curr. Appl. Phys., 2018, 18(3):310~316. 

    67. [67]

      A Dubey, A K Soni, A Kumari et al. J. Alloys Compd., 2017, 693:194~200. 

    68. [68]

      C Yao, C Wei, Z Huang et al. ACS Appl. Mater. Interf., 2016, 8(11):6935~6943. 

    69. [69]

      U Kostiv, I Kotelnikov, V Proks et al. ACS Appl. Mater. Interf., 2016, 8(31):20422~20431. 

    70. [70]

      Y Sun, X J Zhu, J J Peng et al. ACS Nano, 2013, 7(12):11290~11300. 

    71. [71]

      L Q Xiong, Z G Chen, M X Yu et al. Biomaterials, 2009, 30(29):5592~5600. 

    72. [72]

      C Wang, L Cheng, H Xu et al. Biomaterials, 2012, 33(19):4872~4881. 

    73. [73]

      G Tosi, L Costantino, F Rivasi et al. J. Control. Release, 2007, 122(1):1~9. 

    74. [74]

      P Y Wang, C L Wang, L F Lu et al. Biomaterials, 2017, 141:223~232. 

    75. [75]

      Z Li, H Yuan, W Yuan et al. Coord. Chem. Rev., 2018, 354:155~168. 

    76. [76]

      H Li, R Wei, G H Yan et al. ACS Appl. Mater. Interf., 2018, 10(5):4910~4920. 

    77. [77]

      S Han, A Samanta, X J Xie et al. Adv. Mater., 2017, 29(18):1700244. 

    78. [78]

      L Z Song, N Zhao, F J Xu. Adv. Funct. Mater., 2017, 27(32):1701255. 

    79. [79]

      F F Wang, D Zhai, C T Wu et al. Nano Res., 2016, 9(4):1193~1208. 

  • 加载中
    1. [1]

      Qiaorong RU . Synthesis and characterization of tripyridine functionalized polyionic liquid luminescent materials. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 111-119. doi: 10.11862/CJIC.20250121

    2. [2]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    5. [5]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    9. [9]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Zuoyong Li Haoxiang Tu Mingwei Ding Meijun Liu Ting Yang . Innovative Teaching Reform Study on the Synthesis of Silver Nanoparticles Based on Machine Learning and Microfluidic Technology. University Chemistry, 2026, 41(1): 64-75. doi: 10.12461/PKU.DXHX202505088

    12. [12]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    13. [13]

      Kezhen QiBei ChengKaiqiang Xu . Ultrafast interfacial charge transfer promoted by the LSPR of Au nanoparticles for photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2026, 42(3): 100205-0. doi: 10.1016/j.actphy.2025.100205

    14. [14]

      Jiamin Zhang Zhen Fan Jianzhong Du . Integrated Teaching Method Combining Domestic and International Perspectives: A Case Study on Cultivating Innovative Talents in Polymeric Biomaterials. University Chemistry, 2025, 40(7): 156-160. doi: 10.12461/PKU.DXHX202409131

    15. [15]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    16. [16]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

    17. [17]

      Fangfang Chen Haiming Fan Yan Li Yuan He . 化学生物学专业多元化人才培养导向的课程体系优化探索. University Chemistry, 2025, 40(8): 92-99. doi: 10.12461/PKU.DXHX202409108

    18. [18]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    19. [19]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    20. [20]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

Metrics
  • PDF Downloads(8)
  • Abstract views(521)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return