Citation: Zhang Shuai, Qin Bo, Xu Jiangfei, Zhang Xi. Supramolecular Polymerization at Interfaces[J]. Chemistry, ;2020, 83(7): 578-587. shu

Supramolecular Polymerization at Interfaces

Figures(8)

  • The interplay between polymer science and supramolecular chemistry leads to formation of various supramolecular polymers. Supramolecular polymers refer to polymeric arrays whose monomers are connected together through directional noncovalent interactions, resulting in polymeric properties in solution and bulk. So far, most of supramolecular polymers are prepared in homogeneous solutions. However, it remains difficult to controllably prepare supramolecular polymers due to the spontaneous self-assembly process of supramolecular polymerization in solutions. To solve this problem, we can transfer supramolecular polymerization from solutions onto interfaces owing to the unique advantages of interfacial polymerization. For example, supramolecular polymers with higher molecular weights can be obtained through supramolecular interfacial polymerization than that of prepared through solution polymerization. Moreover, two-dimensional supramolecular polymeric membranes fabricated by interfacial polymerization are inherently defect-free, large-area and ordered. In this review, we will highlight recent and important progresses in the area of supramolecular polymers at interfaces, including liquid-liquid, gas-liquid and solid-liquid interfaces. Subsequently, the applications of functional supramolecular polymers prepared by interfacial polymerization are also introduced, such as gas separation, cargo loading and catalysis. Finally, some of the current challenges and opportunities of supramolecular polymers at interfaces are proposed and discussed.
  • 加载中
    1. [1]

      Fouquey C, Lehn J M, Levelut A M. Adv. Mater., 1990, 2(5):254~257. 

    2. [2]

      Sijbesma R P, Beijer F H, Brunsveld L, et al. Science, 1997, 278(5343):1601~1604. 

    3. [3]

      Brunsveld L, Folmer B J B, Meijer E W, et al. Chem. Rev., 2001, 101(12):4071~4097. 

    4. [4]

      Yang L, Tan X, Wang Z, et al. Chem. Rev., 2015, 115(15):7196~7239. 

    5. [5]

      Qin B, Yin Z H, Tang X Y, et al. Prog. Polym. Sci., 2020, 100:101167. 

    6. [6]

      Harada A, Kobayashi R, Takashima Y, et al. Nat. Chem., 2011, 3(1):34~37. 

    7. [7]

      Guo D S, Liu Y. Chem. Soc. Rev., 2012, 41(18):5907~5921. 

    8. [8]

      Xu J F, Chen Y Z, Wu D Y, et al. Angew. Chem. Int. Ed., 2013, 52(37):9738~9742. 

    9. [9]

      Zhang K D, Tian J, Hanifi D, et al. J. Am. Chem. Soc., 2013, 135(47):17913~17918. 

    10. [10]

      Huang Z H, Yang L L, Liu Y L, et al. Angew. Chem. Int. Ed., 2014, 53(21):5351~5355. 

    11. [11]

      Xu J F, Huang Z H, Chen L H, et al. ACS Macro Lett., 2015, 4(12):1410~1414. 

    12. [12]

      Winter A, Schubert U S. Chem. Soc. Rev., 2016, 45(19):5311~5357. 

    13. [13]

      Ogi S, Stepanenko V, Thein J, et al. J. Am. Chem. Soc., 2016, 138(2):670~678. 

    14. [14]

      Yu Z L, Tantakitti F F, Yu T, et al. Science, 2016, 351(6272):497~502. 

    15. [15]

      Balkenende D W R, Monnier C A, Fiore G L, et al. Nat. Commun., 2016, 7:10995. 

    16. [16]

      Yin Z H, Song G B, Jiao Y, et al. CCS Chem., 2019, 1(4):335~342. 

    17. [17]

      Shi J Z, Jia H Y, Chen H, et al. CCS Chem., 2019, 1(3):296~303.

    18. [18]

      Wagner W, Wehner M, Stepanenko V, et al. CCS Chem., 2019, 1(5):598~613. 

    19. [19]

      Burnworth M, Tang L M, Kumpfer J R, et al. Nature, 2011, 472(7343):334~337. 

    20. [20]

      Aida T, Meijer E W, Stupp S I. Science, 2012, 335:813~817. 

    21. [21]

      Yan X Z, Wang F, Zheng B, et al. Chem. Soc. Rev., 2012, 41(18):6042~6065. 

    22. [22]

      Li S L, Xiao T X, Lin C, et al. Chem. Soc. Rev., 2012, 41(18):5950~5968. 

    23. [23]

      Liu K, Kang Y T, Wang Z Q, et al. Adv. Mater., 2013, 25(39):5530~5548. 

    24. [24]

      Ma X, Tian H. Acc. Chem. Res., 2014, 47(7):1971~1981. 

    25. [25]

    26. [26]

      Zhang Q, Shi C Y, Qu D H, et al. Sci. Adv., 2018, 4(7):eaat8192.

    27. [27]

       

    28. [28]

      Abbel R, Grenier C, Pouderoijen M J, et al. J. Am. Chem. Soc., 2009, 131(2):833~843. 

    29. [29]

      Jin H B, Huang W, Zhu X Y, et al. Chem. Soc. Rev., 2012, 41(18):5986~5997. 

    30. [30]

      Wang C, Wu H, Chen Z, et al. Nat. Chem., 2013, 5(12):1042~1048. 

    31. [31]

      Song Q, Gao Y F, Xu J F, et al. ACS Macro Lett., 2016, 5(10):1084~1088. 

    32. [32]

      Peng H Q, Zheng X Y, Han T, et al. J. Am. Chem. Soc., 2017, 139(29):10150~10156. 

    33. [33]

      Yang X Y, Cai W Q, Dong S, et al. ACS Macro Lett., 2017, 6(7):647~651. 

    34. [34]

      Yanagisawa Y, Nan Y L, Okuro K, et al. Science, 2018, 359(6371):72~76. 

    35. [35]

      Yan X Z, Liu Z Y, Zhang Q H, et al. J. Am. Chem. Soc., 2018, 140(15):5280~5289. 

    36. [36]

      Wittbecker E L, Morgan P W. J. Polym. Sci., 1959, 40:289~297. 

    37. [37]

      Greef T F A D, Smulders M M J, Wolffs M, et al. Chem. Rev., 2009, 109(11):5687~5754. 

    38. [38]

      Krieg E, Bastings M M C, Besenius P, et al. Chem. Rev., 2016, 116(4):2414~2477. 

    39. [39]

      Song Q, Li F, Tan X X, et al. Polym. Chem., 2014, 5(20):5895~5899. 

    40. [40]

      Song Q, Li F, Yang L L, et al. Polym. Chem., 2015, 6(3):369~372.

    41. [41]

    42. [42]

      Zhang J, Coulston R J, Jones S T, et al. Science, 2012, 335(6069):690~694. 

    43. [43]

      Pfeffermann M, Dong R H, Graf R, et al. J. Am. Chem. Soc., 2015, 137(45):14525~14532. 

    44. [44]

      Qin B, Zhang S, Song Q, et al. Angew. Chem. Int. Ed., 2017, 56(26):7639~7643. 

    45. [45]

      Qin B, Zhang S, Huang Z, et al. Macromolecules, 2018, 51(5):1620~1625. 

    46. [46]

      Xing J Y, Xue Y H, Lu Z Y, et al. Macromolecules, 2019, 52(17):6393~6404. 

    47. [47]

      Zhang S, Qin B, Huang Z, et al. ACS Macro Lett., 2019, 8(2):177~182. 

    48. [48]

      Sakamoto R, Hoshiko K, Liu Q, et al. Nat. Commun., 2015, 6:6713. 

    49. [49]

      Makiura R, Motoyama S, Umemura Y, et al. Nat. Mater., 2010, 9(7):565~571. 

    50. [50]

      Dong R H, Pfeffermann M, Liang H W, et al. Angew. Chem. Int. Ed., 2015, 54(41):12058~12063. 

    51. [51]

      Iler R K. J. Colloid Interf. Sci.,1966, 21(6):569~579. 

    52. [52]

      Decher G, Hong J D. Makromol. Chem., Macromol. Symp., 1991, 46(1):321~327. 

    53. [53]

      Wang L, Wang Z, Zhang X, et al. Macromol. Rapid Commun., 1997, 18(6):509~514. 

    54. [54]

      Stockton W B, Rubner M F. Macromolecules, 1997, 30(9):2717~2725. 

    55. [55]

      Yang H, Ma Z, Yuan B, et al. Chem. Commun., 2014, 50(76):11173~11176. 

    56. [56]

      Ameloot R, Vermoortele F, Vanhove W, et al. Nat. Chem., 2011, 3(5):382~387. 

    57. [57]

      Brown A J, Brunelli N A, Eum K, et al. Science, 2014, 345(6192):72~75. 

    58. [58]

      Zheng Y, Yu Z, Parker R M, et al. Nat. Commun., 2014, 5:5772. 

    59. [59]

      Yuan B, Yang H, Wang Z, et al. Langmuir, 2014, 30(51):15462~15467. 

    60. [60]

      Cheng M J, Shi F, Li J S, et al. Adv. Mater., 2014, 26(19):3009~3013. 

    61. [61]

      Cheng M J, Zhang Q, Shi F. Chin. J. Polym. Sci., 2018, 36(3):306~321.

  • 加载中
    1. [1]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    4. [4]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    5. [5]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    6. [6]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    7. [7]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    8. [8]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    9. [9]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    10. [10]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    11. [11]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    12. [12]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    13. [13]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    14. [14]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    15. [15]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    16. [16]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    17. [17]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    18. [18]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    19. [19]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    20. [20]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

Metrics
  • PDF Downloads(51)
  • Abstract views(2908)
  • HTML views(1104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return