Ru/CeO2催化剂催化苯乙烯氢甲氧基羰基化反应高选择性制备直链酯类化合物

安静华 王业红 张志鑫 张健 Martin Gocyla Rafal E. Dunin-Borkowski 王峰

引用本文: 安静华,  王业红,  张志鑫,  张健,  Martin Gocyla,  Rafal E. Dunin-Borkowski,  王峰. Ru/CeO2催化剂催化苯乙烯氢甲氧基羰基化反应高选择性制备直链酯类化合物[J]. 催化学报, 2020, 41(6): 963-969. doi: S1872-2067(19)63527-8 shu
Citation:  Jinghua An,  Yehong Wang,  Zhixin Zhang,  Jian Zhang,  Martin Gocyla,  Rafal E. Dunin-Borkowski,  Feng Wang. Linear-regioselective hydromethoxycarbonylation of styrene using Ru-clusters/CeO2 catalyst[J]. Chinese Journal of Catalysis, 2020, 41(6): 963-969. doi: S1872-2067(19)63527-8 shu

Ru/CeO2催化剂催化苯乙烯氢甲氧基羰基化反应高选择性制备直链酯类化合物

  • 基金项目:

    中国科学院战略性先导科技专项(XDB17020300);国家自然科学基金(21721004,21690084,21690080).

摘要: 酯类化合物在工业上具有广泛应用,例如可用于合成香水、调味剂(味精)、洗涤剂和表面活性剂等.其中,烯烃的氢烷氧基羰基化反应是一种合成酯类化合物的重要方法,其低消耗、100%的原子经济性和原料的易获得等优势使其在制备酯类化合物中成为一个有效且实际可行的方法.对于该反应,文献多采用Pd或Rh的络合均相催化剂,其中控制反应过程中直链酯类化合物(L)和支链酯类化合物(B)的选择性是一项颇具挑战性的课题.虽然目前可通过配体的设计和修饰来调节,但多集中在均相催化体系,因此在选择性调变方面的研究仍很欠缺.相对于均相催化,多相催化由于产物易分离和提纯、催化剂可循环使用等优势而逐渐引起了研究者的广泛关注.在多相催化体系中,Pd负载在强酸性树脂作为催化剂已被应用于苯乙烯氢甲氧基羰基化反应,但在该反应中支链酯类化合物为主要产物.因此,寻找一个可有效改善多相反应体系中选择性问题的方法是非常有意义的.
在本研究工作中,我们分别以CeO2纳米颗粒(NP)、CeO2纳米棒(Rod)和CeO2纳米立方体为载体,利用浸渍法制备了Ru/CeO2、Ru/CeO2-rod和Ru/CeO2-cube三种催化剂,并进一步用于苯乙烯氢甲氧基羰基化反应.探究了CO压力、反应温度和反应时间对三种催化剂催化苯乙烯氢甲氧基羰基化反应的影响.结果表明,Ru/CeO2作为多相催化剂催化苯乙烯氢甲氧基羰基化反应时,苯乙烯选择性高于99%,直链酯选择性为83%,支链酯选择性为12%.机理研究表明,该反应为自由基机理.动力学分析表明,该反应的反应活化能为48.50kJ mol-1.结合三种催化剂的反应活性以及HRTEM结构表征结果可知,该反应中L/B比值与Ru的尺寸有较大关系.进一步的拉曼表征和NH3-TPD表征结果证明,Ru的尺寸与金属-载体之间的相互作用以及催化剂表面的氧空位浓度有直接关系.

English

    1. [1] H. Li, K. Dong, H. Jiao, H. Neumann, R. Jackstell, M. Beller, Nat. Chem., 2016, 8, 1159-1166.

    2. [2] Y. Dou, H. Zhang, A. Zhou, F. Yang, L. Shu, Y. She, J.-R. Li, Ind. Eng. Chem. Res., 2018, 57, 8388-8395.

    3. [3] F. E. A. Van Waes, J. Drabowicz, A. Cukalovic, C. V. Stevens, Green Chem., 2012, 14, 2776.

    4. [4] M. Noè, A. Perosa, M. Selva, Green Chem., 2013, 15, 2252.

    5. [5] K. Dong, X. Fang, S. Gülak, R. Franke, A. Spannenberg, H. Neumann, R. Jackstell, M. Beller, Nat. Commun., 2017, 8, 14117.

    6. [6] L. Wu, Q. Liu, I. Fleischer, R. Jackstell, M. Beller, Nat. Commun., 2014, 5, 3091.

    7. [7] P. Roesle, C. J. Durr, H. M. Moller, L. Cavallo, L. Caporaso, S. Mecking, J. Am. Chem. Soc., 2012, 134, 17696-17703.

    8. [8] P. Roesle, L. Caporaso, M. Schnitte, V. Goldbach, L. Cavallo, S. Mecking, J. Am. Chem. Soc., 2014, 136, 16871-16881.

    9. [9] Q. Liu, K. Yuan, P.-B. Arockiam, R. Franke, H. Doucet, R. Jackstell, M. Beller, Angew. Chem. Int. Ed., 2014, 54, 4493-4497.

    10. [10] D. B. Williams, M. L. Shaw, M. J. Green, C. W. Holzapfel, Angew. Chem. Int. Ed., 2008, 47, 560-563.

    11. [11] X. Fang, H. Li, R. Jackstell, M. Beller, Angew. Chem. Int. Ed., 2014, 53, 9030-9034.

    12. [12] L. Wu, Q. Liu, R. Jackstell, M. Beller, Angew. Chem. Int. Ed., 2014, 53, 6310-6320.

    13. [13] D. B. Nielsen, B. A. Wahlqvist, D. U. Nielsen, K. Daasbjerg, T. Skrydstrup, ACS Catal., 2017, 7, 6089-6093.

    14. [14] X. F. Wu, X. Fang, L. Wu, R. Jackstell, H. Neumann, M. Beller, Acc. Chem. Res., 2014, 47, 1041-1053.

    15. [15] J.-B. Peng, X.-F. Wu, Angew. Chem. Int. Ed., 2018, 57, 1152-1160.

    16. [16] E. Guiu, B. Muñoz, C. Müller, M. Luta, A. L. Spek, C. Claver, P. W. N. M. van Leeuwen, Organometallics, 2006, 25, 3102-3104.

    17. [17] M. Amezquita-Valencia, G. Achonduh, H. Alper, J. Org. Chem., 2015, 80, 6419-6424.

    18. [18] W. Wang, L. Cui, P. Sun, L. Shi, C. Yue, F. Li, Chem. Rev., 2018, 118, 9843-9929.

    19. [19] Z. He, Z. Hou, Y. Luo, Y. Dilixiati, W. Eli, Catal. Sci. Technol., 2014, 4, 1092.

    20. [20] Pd-TPPTS-OTPPTS (denoted as Pd-P-OP, where TPPTS was the sodium salt of tri(m-sulfophenyl)phosphine and OTPPTS was the oxidized form of TPPTS) complexes supported on acidic resins (denoted as Pd-P-OP/resin).

    21. [21] J. An, Y. Wang, J. Lu, J. Zhang, Z. Zhang, S. Xu, X. Liu, T. Zhang, M. Gocyla, M. Heggen, R. E. Dunin-Borkowski, P. Fornasiero, F. Wang, J. Am. Chem. Soc., 2018, 140, 4172-4181.

    22. [22] J. An, Y. Wang, Z. Zhang, Z. Zhao, J. Zhang, F. Wang, Angew. Chem. Int. Ed., 2018, 57, 12308-12312.

    23. [23] Y. Wang, J. Zhang, H. Chen, Z. Zhang, C. Zhang, M. Li, F. Wang, Green Chem., 2017, 19, 88-92.

    24. [24] C. Hansch, A. Leo, R. W. Taft, Chem. Rev., 1991, 91, 165-195.

    25. [25] M. Wang, F. Wang, J. Ma, M. Li, Z. Zhang, Y. Wang, X. Zhang, J. Xu, Chem. Commun., 2014, 50, 292-294.

    26. [26] A. Marjasvaara, M. Torvinen, P. Vainiotalo, J. Mass Spectrom., 2004, 39, 1139-1146.

    27. [27] A. Abad, A. Corma, H. Garcia, Chem. Eur. J., 2008, 14, 212-222.

    28. [28] Z. Zhang, Y. Wang, M. Wang, J. Lü, L. Li, Z. Zhang, M. Li, J. Jiang, F. Wang, Chin. J. Catal., 2015, 36, 1623-1630.

    29. [29] F. Wang, C. Li, X. Zhang, M. Wei, D. G. Evans, X. Duan, J. Catal., 2015, 329, 177-186.

    30. [30] H. Huang, Q. Dai, X. Wang, Appl. Catal. B, 2014, 158-159, 96-105.

    31. [31] X. Zhang, R. You, D. Li, T. Cao, W. Huang, ACS Appl. Mater. Interfaces, 2017, 9, 35897-35907.

    32. [32] A. Aitbekova, L. Wu, C. J. Wrasman, A. Boubnov, A. S. Hoffman, E. D. Goodman, S. R. Bare, M. Cargnello, J. Am. Chem. Soc., 2018, 140, 13736-13745.

    33. [33] S. Li, Y. Xu, Y. Chen, W. Li, L. Lin, M. Li, Y. Deng, X. Wang, B. Ge, C. Yang, S. Yao, J. Xie, Y. Li, X. Liu, D. Ma, Angew. Chem. Int. Ed., 2017, 56, 10761-10765.

    34. [34] J. Chen, H. Wang, Z. Wang, S. Mao, J. Yu, Y. Wang, Y. Wang, ACS Catal., 2019, 9, 5302-5307.

    35. [35] J. Dong, Q. Fu, Z. Jiang, B. Mei, X. Bao, J. Am. Chem. Soc., 2018, 140, 13808-13816.

    36. [36] W. Lin, A. A. Herzing, C. J. Kiely, I. E. Wachs, J. Phys. Chem. C, 2008, 112, 5942-5951.

    37. [37] Y. Guo, S. Mei, K. Yuan, D.-J. Wang, H.-C. Liu, C.-H. Yan, Y.-W. Zhang, ACS Catal., 2018, 8, 6203-6215.

    38. [38] X. P. Fu, L. W. Guo, W. W. Wang, C. Ma, C. J. Jia, K. Wu, R. Si, L. D. Sun, C. H. Yan, J. Am. Chem. Soc., 2019, 141, 4613-4623.

    39. [39] Q. Dai, S. Bai, J. Wang, M. Li, X. Wang, G. Lu, Appl. Catal. B, 2013, 142-143, 222-233.

    40. [40] Z. Zhang, Y. Wang, J. Lu, J. Zhang, M. Li, X. Liu, F. Wang, ACS Catal., 2018, 8, 2635-2644.

    41. [41] S. Zhang, C. R. Chang, Z. Q. Huang, J. Li, Z. Wu, Y. Ma, Z. Zhang, Y. Wang, Y. Qu, J. Am. Chem. Soc., 2016, 138, 2629-2637.

    42. [42] Y. Guo, Y. Zhao, Z. Zhao, Chin. J. Catal., 2018, 39, 181-189.

    43. [43] C. Huang, Z. Q. Wang, X. Q. Gong, Chin. J. Catal., 2018, 39, 1520-1526.

    44. [44] A. Satsuma, M. Yanagihara, J. Ohyama, K. Shimizu, Catal. Today, 2013, 201, 62-67.

    45. [45] Z. Zhang, Y. Wang, M. Wang, J. Lu, C. Zhang, L. Li, J. Jiang, F. Wang, Catal. Sci. Technol., 2016, 6, 1693-1700.

    46. [46] M. Nishiumi, H. Miura, K. Wada, S. Hosokawa, M. Inoue, ACS Catal., 2012, 2, 1753-1759.

  • 加载中
计量
  • PDF下载量:  18
  • 文章访问数:  883
  • HTML全文浏览量:  119
文章相关
  • 收稿日期:  2019-10-31
  • 修回日期:  2019-12-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章