多相CeO2催化剂上氧化吲哚与醛的选择性C3烯基化反应

Md. Nurnobi Rashed Abeda Sultana Touchy Chandan Chaudhari Jaewan Jeon S. M. A. Hakim Siddiki Takashi Toyao Ken-ichi Shimizu

引用本文: Md. Nurnobi Rashed,  Abeda Sultana Touchy,  Chandan Chaudhari,  Jaewan Jeon,  S. M. A. Hakim Siddiki,  Takashi Toyao,  Ken-ichi Shimizu. 多相CeO2催化剂上氧化吲哚与醛的选择性C3烯基化反应[J]. 催化学报, 2020, 41(6): 970-976. doi: S1872-2067(19)63515-1 shu
Citation:  Md. Nurnobi Rashed,  Abeda Sultana Touchy,  Chandan Chaudhari,  Jaewan Jeon,  S. M. A. Hakim Siddiki,  Takashi Toyao,  Ken-ichi Shimizu. Selective C3-alkenylation of oxindole with aldehydes using heterogeneous CeO2 catalyst[J]. Chinese Journal of Catalysis, 2020, 41(6): 970-976. doi: S1872-2067(19)63515-1 shu

多相CeO2催化剂上氧化吲哚与醛的选择性C3烯基化反应

  • 基金项目:

    This study was supported financially by a series of JSPS KAKENHI grants:17H01341, 18K14051, 18K14057, and 19K05556 from the Japan Society for the Promotion of Science (JSPS) and by the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) within the projects "Integrated Research Consortium on Chemical Sciences (IRCCS)" and "Elements Strategy Initiative to Form Core Research Center", as well as by the JST-CREST project JPMJCR17J3.

摘要: 本文报道了将市售CeO2作为一种高活性和可重复使用的催化剂用于无溶剂条件下氧化吲哚与醛的C3选择性烷基化反应.这种催化方法一般适用于不同的芳香族和脂肪族醛,得到3-烷基二烯-辛醇,产率高(87%-99%),立体选择性高(79%-93%为E-异构体).这是从氧化吲哚与各种脂肪族醛催化合成3-烯基氧化吲哚的首例.采用原位红外光谱研究了CeO2上Lewis酸位点与苯甲醛之间的Lewis酸-碱相互作用.不同粒径CeO2催化剂的构效关系研究表明,无缺陷CeO2表面是该反应的活性中心.

English

    1. [1] A. Millemaggi, R. J. K. Taylor, Eur. J. Org. Chem., 2010, 4527-4547.

    2. [2] S. K. Suthar, S. Bansal, M. M. Alam, V. Jaiswal, A. Tiwari, A. Chaudhary, A. T. Alex, A. Joseph, Bioorg. Med. Chem. Lett., 2015, 25, 5281-5285.

    3. [3] D. Bensinger, D. Stubba, A. Cremer, V. Kohl, T. Waßmer, J. Stuckert, V. Engemann, K. Stegmaier, K. Schmitz, B. Schmidt, J. Med. Chem., 2019, 62, 2428-2446.

    4. [4] A. Namil, M. Benoit-Guyod, G. LeClerc, Eur J. Med. Chem., 1995, 30, 973-981.

    5. [5] H. Wang, M. Chen, L. Wang, Chem. Pharm. Bull., 2007, 55, 1439-1441.

    6. [6] S. Lin, Z. Q. Yang, B. H. B. Kwok, M. Koldobskiy, C. M. Crews, S. J. Danishefsky, J. Am. Chem. Soc., 2004, 126, 6347-6355.

    7. [7] T. Fukuyama, G. Liu, J. Am. Chem. Soc., 1996, 118, 7426-7427.

    8. [8] D. B. Ramachary, C. Venkaiah, P. M. Krishna, Org. Lett., 2013, 15, 4714-4717.

    9. [9] X. F. Huang, Z. M. Liu, Z. C. Geng, S. Y. Zhang, Y. Wang, X. W. Wang, Org. Biomol. Chem., 2012, 10, 8794-8799.

    10. [10] N. R. Ball-Jones, J. J. Badillo, A. K. Franz, Org. Biomol. Chem., 2012, 10, 5165-5181.

    11. [11] B. Viswambharan, K. Selvakumar, S. Madhavan, P. Shanmugam, Org. Lett., 2010, 12, 2108-2111.

    12. [12] X. H. Chen, Q. Wei, S. W. Luo, H. Xiao, L. Z. Gong, J. Am. Chem. Soc., 2009, 131, 13819-13825.

    13. [13] B. M. Trost, N. Cramer, S. M. Silverman, J. Am. Chem. Soc., 2007, 129, 12396-12397.

    14. [14] W. Zhang, M. L. Go, Bioorg. Med. Chem., 2009, 17, 2077-2090.

    15. [15] H. Jiang, Z. Feng, T. Chen, Z. Li, W. Huang, Y. Luo, Y. Zhao, J. Chem. Res., 2018, 42, 44-49.

    16. [16] A. Nagarsenkar, S. K. Prajapti, S. D. Guggilapu, S. Birineni, S. Sravanti Kotapalli, R. Ummanni, B. N. Babu, MedChemComm, 2016, 7, 646-653.

    17. [17] M. N. A. Andreani, M. Rambaldv, A. Locatelli, R. Bossa, I. Galatulas, Eur. J. Med. Chem., 1990, 25, 187-190.

    18. [18] H. J. Lee, J. W. Lim, J. Yu, J. N. Kim, Tetrahedron Lett., 2014, 55, 1183-1187.

    19. [19] D. Villemin, B. Martin, Synth. Commun., 1998, 28, 3201-3208.

    20. [20] P. W. Y. Hu, H. Kang, B. Zeng, H. Huang, Heterocycl. Commun., 2008, 14, 263-267.

    21. [21] C. Van Goethem, M. Mertens, F. G. Cirujano, J. W. Seo, D. De Vos, I. F. J. Vankelecom, Chem. Commun., 2018, 54, 7370-7373.

    22. [22] H. Jin, J. Xie, C. Pan, Z. Zhu, Y. Cheng, C. Zhu, ACS Catal., 2013, 3, 2195-2198.

    23. [23] P. Gholamzadeha, G. M. Ziarania, A. Badieib, Z. Bahrami, Eur. J. Chem., 2012, 3, 279-282.

    24. [24] L. Vivier, D. Duprez, ChemSusChem, 2010, 3, 654-678.

    25. [25] M. Tamura, M. Honda, Y. Nakagawa, K. Tomishige, J. Chem. Technol. Biotechnol., 2014, 89, 19-33.

    26. [26] W. Huang, Y. Gao, Catal. Sci. Technol., 2014, 4, 3772-3784.

    27. [27] M. Tamura, H. Wakasugi, K. Shimizu, A. Satsuma, Chem. Eur. J., 2011, 17, 11428-11431.

    28. [28] M. Tamura, K. Shimizu, A. Satsuma, Chem. Lett., 2012, 41, 41,1397-1405.

    29. [29] M. Tamura, T. Tonomura, K. Shimizu, A. Satsuma, Appl. Catal. A, 2012, 417-418, 6-12.

    30. [30] M. Tamura, T. Tonomura, K. Shimizu, A. Satsuma, Green Chem., 2012, 14, 984-991.

    31. [31] M. Tamura, A. Satsuma, K. I. Shimizu, Catal. Sci. Technol., 2013, 3, 1386-1393.

    32. [32] M. Tamura, S. M. A. H. Siddiki, K. Shimizu, Green Chem., 2013, 15, 1641-1646.

    33. [33] S. M. A. H. Siddiki, A. S. Touchy, M. Tamura, K. Shimizu, RSC Adv., 2014, 4, 35803-35807.

    34. [34] M. Tamura, K. Sawabe, K. Tomishige, A. Satsuma, K. Shimizu, ACS Catal., 2015, 5, 20-26.

    35. [35] T. Toyao, M. N. Rashed, Y. Morita, T. Kamachi, S. M. A. H. Siddiki, M. A. Ali, A. S. Touchy, K. Kon, Z. Maeno, K. Yoshizawa, K. Shimizu, ChemCatChem, 2019, 11, 449-456.

    36. [36] M. N. Rashed, S. M. A. H. Siddiki, A. S. Touchy, M. A. R. Jamil, S. S. Poly, T. Toyao, Z. Maeno, K. Shimizu, Chem. Eur. J., 2019, 25, 10594-10605.

    37. [37] T. E. James, S. L. Hemmingson, T. Ito, C. T. Campbell, J. Phys. Chem. C, 2015, 119, 17209-17217.

    38. [38] M. N. Revoy, R. W. J. Scott, A. P. Grosvenor, J. Phys. Chem. C, 2013, 117, 10095-10105.

    39. [39] K. Shimura, K. Kon, S. M. A. H. Siddiki, K. Shimizu, Appl. Catal. A, 2013, 462, 137-142.

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  229
  • HTML全文浏览量:  10
文章相关
  • 收稿日期:  2019-07-30
  • 修回日期:  2019-09-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章