二氧化铈与氢气之间相互作用及其在炔烃选择加氢中的应用

James Kammert Jisue Moon Zili Wu

引用本文: James Kammert,  Jisue Moon,  Zili Wu. 二氧化铈与氢气之间相互作用及其在炔烃选择加氢中的应用[J]. 催化学报, 2020, 41(6): 901-914. doi: S1872-2067(19)63509-6 shu
Citation:  James Kammert,  Jisue Moon,  Zili Wu. A review of the interactions between ceria and H2 and the applications to selective hydrogenation of alkynes[J]. Chinese Journal of Catalysis, 2020, 41(6): 901-914. doi: S1872-2067(19)63509-6 shu

二氧化铈与氢气之间相互作用及其在炔烃选择加氢中的应用

摘要: 二氧化铈因其具有较强的氧化还原性能和多变的酸碱功能而在催化领域有着广泛的应用,其可用作催化剂、改性剂或载体.虽然二氧化铈常被用于氧化反应,但由于其独特的选择性地将炔烃加氢成烯烃的能力,近年来引起了广泛的研究兴趣.氧化铈出色的加氢能力引发了新的研究热潮,以了解纯二氧化铈用作加氢催化剂的原理.本文综述了近年来氧化铈的实验和计算研究进展,重点介绍了氧化铈与氢气的相互作用和加氢反应.讨论了各种研究的重要观点,包括原位光谱/显微镜和铈在涉氢反应中的理论模型,从而阐明了氧化铈催化炔烃加氢反应能力的本质和反应机理.最后在总结和展望部分提出了进一步提高对铈基材料加氢反应机理认识和催化性能的途径.

English

    1. [1] J. Kašpar, P. Fornasiero, N. Hickey, Catal. Today, 2003, 77, 419-449.

    2. [2] H. C.Yao, Y. F. Yu Yao, J. Catal., 1984, 86, 254-265.

    3. [3] L. Vivier, D. Duprez, ChemSusChem, 2010, 3, 654-678.

    4. [4] J. Paier, C. Penschke, J. Sauer, Chem. Rev., 2013, 113, 3949-3985.

    5. [5] R. Juárez, P. Concepción, A. Corma, H. García, Chem. Commun., 2010, 46, 4181-4183.

    6. [6] A. Leyva-Pérez, D. Cómbita-Merchán, J. R. Cabrero-Antonino, S. I. Al-Resayes, A. Corma, ACS Catal., 2013, 3, 250-258.

    7. [7] M. Tamura, K. Tomishige, Angew. Chem. Int. Ed., 2015, 54, 864-867.

    8. [8] C. Binet, M. Daturi, J. C. Lavalley, Catal. Today, 1999, 50, 207-225.

    9. [9] Z. Wu, A. K. P. Mann, M. Li, S. H. Overbury, J. Phys. Chem. C, 2015, 119, 7340-7350.

    10. [10] A. K. P. Mann, Z. Wu, F. C. Calaza, S. H. Overbury, ACS Catal., 2014, 4, 2437-2448.

    11. [11] Y. Wang, F. Wang, Q. Song, Q. Xin, S. Xu, J. Xu, J. Am. Chem. Soc., 2013, 135, 1506-1515.

    12. [12] S. Zhang, Z. Xia, Y. Zou, F. Cao, Y. Liu, Y. Ma, Y. Qu, J. Am. Chem. Soc., 2019, 141, 11353-11357.

    13. [13] Z. Zhang, Y. Wang, J. Lu, J. Zhang, M. Li, X. Liu, F. Wang, ACS Catal., 2018, 8, 2635-2644.

    14. [14] H. Kaneko, T. Miura, H. Ishihara, S. Taku, T. Yokoyama, H. Nakajima, Y. Tamaura, Energy, 2007, 32, 656-663.

    15. [15] A. Le Gal, S. Abanades, J. Phys. Chem. C, 2012, 116, 13516-13523.

    16. [16] S. Mansingh, D. K. Padhi, K. M. Parida, Int. J. Hydrogen Energy, 2016, 41, 14133-14146.

    17. [17] W.-J. Shen, Y. Ichihashi, H. Ando, Y. Matsumura, M. Okumura, M. Haruta, Appl. Catal. A, 2001, 217, 231-239.

    18. [18] A. Trovarelli, C. deleitenburg, G. Dolcetti, J. L. Lorca, J. Catal., 1995, 151, 111-124.

    19. [19] A. Trovarelli, G. Dolcetti, C. de Leitenburg, J. Kaspar, Stud. Surf. Sci. Catal., 1993, 75, 2781-2784.

    20. [20] F. Wang, S. He, H. Chen, B. Wang, L. Zheng, M. Wei, D. G. Evans, X. Duan, J. Am. Chem. Soc., 2016, 138, 6298-6305.

    21. [21] N. Kumari, M. A. Haider, M. Agarwal, N. Sinha, S. Basu, J. Phys. Chem. C, 2016, 120, 16626-16635.

    22. [22] K. Werner, X. Weng, F. Calaza, M. Sterrer, T. Kropp, J. Paier, J. Sauer, M. Wilde, K. Fukutani, S. Shaikhutdinov, H. J. Freund, J. Am. Chem. Soc., 2017, 139, 17608-17616.

    23. [23] T. Cao, R. You, X. Zhang, S. Chen, D. Li, Z. Zhang, W. Huang, Phys. Chem. Chem. Phys., 2018, 20, 9659-9670.

    24. [24] Y. Azizi, C. Petit, V. Pitchon, J. Catal., 2008, 256, 338-344.

    25. [25] J. Carrasco, G. Vilé, D. Fernández-Torre, R. Pérez, J. Pérez-Ramírez, M. V. Ganduglia-Pirovano, J. Phys. Chem. C, 2014, 118, 5352-5360.

    26. [26] G. Vilé, B. Bridier, J. Wichert, J. Perez-Ramirez, Angew. Chem. Int. Ed., 2012, 51, 8620-3.

    27. [27] C. Riley, S. Zhou, D. Kunwar, A. De La Riva, E. Peterson, R. Payne, L. Gao, S. Lin, H. Guo, A. Datye, J. Am. Chem. Soc., 2018, 140, 12964-12973.

    28. [28] M. Chong, D.-g. Cheng, L. Liu, F. Chen, X. Zhan, Catal. Lett., 2007, 114, 198-201.

    29. [29] S. Zhang, Z. Q. Huang, Y. Ma, W. Gao, J. Li, F. Cao, L. Li, C. R. Chang, Y. Qu, Nat. Commun., 2017, 8, 15266.

    30. [30] Y. Ma, W. Gao, Z. Zhang, S. Zhang, Z. Tian, Y. Liu, J. C. Ho, Y. Qu, Surf. Sci. Rep., 2018, 73, 1-36.

    31. [31] G. Vilé, D. Albani, N. Almora-Barrios, N. López, J. Pérez-Ramírez, ChemCatChem, 2016, 8, 21-33.

    32. [32] G. Vilé, S. Wrabetz, L. Floryan, M. E. Schuster, F. Girgsdies, D. Teschner, J. Pérez-Ramírez, ChemCatChem, 2014, 6, 1928-1934.

    33. [33] Z.-Q. Huang, L.-P. Liu, S. Qi, S. Zhang, Y. Qu, C.-R. Chang, ACS Catal., 2018, 8, 546-554.

    34. [34] S. Zhou, L. Gao, F. Wei, S. Lin, H. Guo, J. Catal., 2019, 375, 410-418.

    35. [35] D. Fernandez-Torre, J. Carrasco, M. V. Ganduglia-Pirovano, R. Perez, J. Chem. Phys., 2014, 141, 014703.

    36. [36] M. García-Melchor, N. López, J. Phys. Chem. C, 2014, 118, 10921-10926.

    37. [37] M. García-Melchor, L. Bellarosa, N. López, ACS Catal., 2014, 4, 4015-4020.

    38. [38] Z. Wu, Y. Cheng, F. Tao, L. Daemen, G. S. Foo, L. Nguyen, X. Zhang, A. Beste, A. J. Ramirez-Cuesta, J. Am. Chem. Soc., 2017, 139, 9721-9727.

    39. [39] M. Mogensen, N. M. Sammes, G. A. Tompsett, Solid State Ionics, 2000, 129, 63-94.

    40. [40] L. Fan, C. Wang, M. Chen, B. Zhu, J. Power Sources, 2013, 234, 154-174.

    41. [41] C. Sun, H. Li, L. Chen, Energy Environ. Sci., 2012, 5, 8475-8505.

    42. [42] W. Huang, Y. Gao, Catal. Sci. Technol., 2014, 4, 3772-3784.

    43. [43] D. Zhang, X. Du, L. Shi, R. Gao, Dalton Trans., 2012, 41, 14455-14475.

    44. [44] A. Trovarelli, Catal. Rev. Sci. Eng., 1996, 38, 439-520.

    45. [45] A. Trovarelli, J. Llorca, ACS Catal., 2017, 7, 4716-4735.

    46. [46] F. Polo-Garzon, Z. Bao, X. Zhang, W. Huang, Z. Wu, ACS Catal., 2019, 9, 5692-5707.

    47. [47] M. Daturi, E. Finocchio, C. Binet, J. C. Lavalley, F. Fally, V. Perrichon, J. Phys. Chem. B, 1999, 103, 4884-4891.

    48. [48] M. Daturi, C. Binet, J.-C. Lavalley, A. Galtayries, R. Sporken, Phys. Chem. Chem. Phys., 1999, 1, 5717-5724.

    49. [49] Z.-A. Qiao, Z. Wu, S. Dai, ChemSusChem, 2013, 6, 1821-1833.

    50. [50] Y. Li, W. Shen, Chem. Soc. Rev., 2014, 43, 1543-1574.

    51. [51] S. Chen, F. Xiong, W. Huang, Surf. Sci. Rep., 2019, https://doi.org/10.1016/j.surfrep.2019.100471.

    52. [52] K. Wu, L.-D. Sun, C.-H. Yan, Adv. Energy Mater., 2016, 6, 1600501.

    53. [53] R. Juárez, S. F. Parker, P. Concepción, A. Corma, H. García, Chem. Sci., 2010, 1, 731-738.

    54. [54] C. Schilling, A. Hofmann, C. Hess, M. V. Ganduglia-Pirovano, J. Phys. Chem. C, 2017, 121, 20834-20849.

    55. [55] M. Wang, X.-P. Wu, S. Zheng, L. Zhao, L. Li, L. Shen, Y. Gao, N. Xue, X. Guo, W. Huang, Z. Gan, F. Blanc, Z. Yu, X. Ke, W. Ding, X.-Q. Gong, C. P. Grey, L. Peng, Sci. Adv., 2015, 1, e1400133.

    56. [56] H.-Z. Zhu, Y.-M. Lu, F.-J. Fan, S.-H. Yu, Nanoscale, 2013, 5, 7219-7223.

    57. [57] S. M. F. Shahed, T. Hasegawa, Y. Sainoo, Y. Watanabe, N. Isomura, A. Beniya, H. Hirata, T. Komeda, Surf. Sci., 2014, 628, 30-35.

    58. [58] M. F. Bekheet, M. Grunbacher, L. Schlicker, A. Gili, A. Doran, J. D. Epping, A. Gurlo, B. Klotzer, S. Penner, CrystEngComm, 2019, 21, 145-154.

    59. [59] M. Bugnet, S. H. Overbury, Z. L. Wu, T. Epicier, Nano Lett., 2017, 17, 7652-7658.

    60. [60] M. F. L. Johnson, J. Mooi, J. Catal., 1987, 103, 502-505.

    61. [61] V. Perrichon, A. Laachir, G. Bergeret, R. Fréty, L. Tournayan, O. Touret, J. Chem. Soc., Faraday Trans., 1994, 90, 773-781.

    62. [62] L. A. Bruce, M. Hoang, A. E. Hughes, T. W. Turney, Appl. Catal. A, 1996, 134, 351-362.

    63. [63] F. Giordano, A. Trovarelli, C. de Leitenburg, M. Giona, J. Catal., 2000, 193, 273-282.

    64. [64] F. Giordano, A. Trovarelli, C. de Leitenburg, G. Dolcetti, M. Giona, Ind. Eng. Chem. Res., 2001, 40, 4828-4835.

    65. [65] Tana, M. Zhang, J. Li, H. Li, Y. Li, W. Shen, Catal. Today, 2009, 148, 179-183.

    66. [66] L. Liu, Y. Cao, W. Sun, Z. Yao, B. Liu, F. Gao, L. Dong, Catal. Today, 2011, 175, 48-54.

    67. [67] T. Désaunay, G. Bonura, V. Chiodo, S. Freni, J. P. Couzinié, J. Bourgon, A. Ringuedé, F. Labat, C. Adamo, M.Cassir, J. Catal., 2013, 297, 193-201.

    68. [68] J. Xu, J. Harmer, G. Li, T. Chapman, P. Collier, S. Longworth, S. C. Tsang, Chem. Commun., 2010, 46, 1887-9.

    69. [69] S. Bernal, J. J. Calvino, G. A. Cifredo, J. M. Gatica, J. A. Perez Omil, J. M. Pintado, J. Chem. Soc., Faraday Trans., 1993, 89, 3499-3505.

    70. [70] Z. Li, K. Werner, K. Qian, R. You, A. Plucienik, A. Jia, L. Wu, L. Zhang, H. Pan, H. Kuhlenbeck, S. Shaikhutdinov, W. Huang, H. J. Freund, Angew. Chem. Int. Ed., 2019, https://doi.org/10.1002/anie.201907117.

    71. [71] Y. Gao, R. Li, S. Chen, L. Luo, T. Cao, W. Huang, Phys. Chem. Chem. Phys., 2015, 17, 31862-71.

    72. [72] C. Lamonier, G. Wrobel, J. P. Bonnelle, J. Mater. Chem., 1994, 4, 1927-1928.

    73. [73] G. Wrobel, C. Lamonier, A. Bennani, A. D'Huysser, A. Aboukaïs, J. Chem. Soc., Faraday Trans., 1996, 92, 2001-2009.

    74. [74] J. L. G. Fierro, J. Soria, J. Sanz, J. M. Rojo, J. Solid State Chem., 1987, 66, 154-162.

    75. [75] J. Cunningham, S. O'Brien, J. Sanz, J. M. Rojo, J. A. Soria, J. L. G. Fierro, J. Mol. Catal., 1990, 57, 379-396.

    76. [76] T. Matsukawa, A. Hoshikawa, E. Niwa, M. Yashima, T. Ishigaki, CrystEngComm, 2018, 20, 155-158.

    77. [77] P. A. Crozier, R. Wang, R. Sharma, Ultramicroscopy, 2008, 108, 1432-40.

    78. [78] R. Wang, P. A. Crozier, R. Sharma, J. Phys. Chem. C, 2009, 113, 5700-5704.

    79. [79] G. Möbus, Z. Saghi, D. C. Sayle, U. M. Bhatta, A. Stringfellow, T. X. T. Sayle, Adv. Funct. Mater., 2011, 21, 1971-1976.

    80. [80] O. S. Bezkrovnyi, P. Kraszkiewicz, M. Ptak, L. Kepinski, Catal. Commun., 2018, 117, 94-98.

    81. [81] J. Lamotte, V. Morávek, M. Bensitel, J. C. Lavalley, React. Kinet. Catal. Lett., 1988, 36, 113-118.

    82. [82] C. Binet, A. Badri, J.-C. Lavalley, J. Phys. Chem., 1994, 98, 6392-6398.

    83. [83] A. Badri, C. Binet, J.-C. Lavalley, J. Chem. Soc., Faraday Trans., 1997, 93, 1159-1168.

    84. [84] A. Badri, C. Binet, J.-C. Lavalley, J. Chem. Soc., Faraday Trans., 1996, 92, 4669-4673

    85. [85] J. Vecchietti, M. A. Baltanás, C. Gervais, S. E. Collins, G. Blanco, O. Matz, M. Calatayud, A. Bonivardi, J. Catal., 2017, 345, 258-269.

    86. [86] S. M. Schimming, G. S. Foo, O. D. LaMont, A. K. Rogers, M. M. Yung, A. D. D'Amico, C. Sievers, J. Catal., 2015, 329, 335-347.

    87. [87] D. Martin, D. Duprez, J. Phys. Chem. B, 1997, 101, 4428-4436.

    88. [88] C. Binet, A. Jadi, J. Lamotte, J. C. Lavalley, J. Chem. Soc., Faraday Trans., 1996, 92, 123-129.

    89. [89] C. Li, Q. Xin, J. Phys. Chem., 1992, 96, 7714-7718.

    90. [90] G. N. Vayssilov, M. Mihaylov, P. S. Petkov, K. I. Hadjiivanov, K. M. Neyman, J. Phys. Chem. C, 2011, 115, 23435-23454.

    91. [91] Z. Wu, M. Li, J. Howe, H. M. Meyer, S. H. Overbury, Langmuir, 2010, 26, 16595-606.

    92. [92] Z. Wu, M. Li, D. R. Mullins, S. H. Overbury, ACS Catal., 2012, 2, 2224-2234.

    93. [93] T. Duchoň, F. Dvořák, M. Aulická, V. Stetsovych, M. Vorokhta, D. Mazur, K. Veltruská, T. Skála, J. Mysliveček, I. Matolínová, V. Matolín, J. Phys. Chem. C, 2013, 118, 357-365.

    94. [94] T. Duchoň, F. Dvořák, M. Aulická, V. Stetsovych, M. Vorokhta, D. Mazur, K. Veltruská, T. Skála, J. Mysliveček, I. Matolínová, V. Matolín, J. Phys. Chem. C, 2014, 118, 5058-5059.

    95. [95] C. Barth, C. Laffon, R. Olbrich, A. Ranguis, P. Parent, M. Reichling, Sci. Rep., 2016, 6, 21165.

    96. [96] B. Chen, Y. Ma, L. Ding, L. Xu, Z. Wu, Q. Yuan, W. Huang, J. Phys. Chem. C, 2013, 117, 5800-5810.

    97. [97] G. Vilé, S. Colussi, F. Krumeich, A. Trovarelli, J. Perez-Ramirez, Angew. Chem. Int. Ed., 2014, 53, 12069-72.

    98. [98] M. Wilde, K. Fukutani, W. Ludwig, B. Brandt, J. H. Fischer, S. Schauermann, H. J. Freund, Angew. Chem. Int. Ed., 2008, 47, 9289-93.

    99. [99] K. V. Kovtunov, D. A. Barskiy, O. G. Salnikov, A. K. Khudorozhkov, V. I. Bukhtiyarov, I. P. Prosvirin, I. V. Koptyug, Chem. Commun., 2014, 50, 875-8.

    100. [100] E. W. Zhao, H. Zheng, R. Zhou, H. E. Hagelin-Weaver, C. R. Bowers, Angew. Chem. Int. Ed., 2015, 54, 14270-5.

    101. [101] E. W. Zhao, Y. Xin, H. E. Hagelin-Weaver, C. R. Bowers, ChemCatChem, 2016, 8, 2197-2201.

    102. [102] G. Vilé, P. Dähler, J. Vecchietti, M. Baltanás, S. Collins, M. Calatayud, A. Bonivardi, J. Pérez-Ramírez, J. Catal., 2015, 324, 69-78.

    103. [103] R. Mas-Ballesté, A. Lledós, In:Comprehensive Inorganic Chemistry II (Second Edition), J. Reedijk, K. Poeppelmeier, Eds. Elsevier:Amsterdam, 2013, 727-766.

    104. [104] E. N. Gribov, S. Bertarione, D. Scarano, C. Lamberti, G. Spoto, A. Zecchina, J. Phys. Chem. B, 2004, 108, 16174-16186.

    105. [105] J. Joubert, A. Salameh, V. Krakoviack, F. Delbecq, P. Sautet, C. Copéret, J. M. Basset, J. Phys. Chem. B, 2006, 110, 23944-23950.

    106. [106] M. Menetrey, A. Markovits, C. Minot, Surf. Sci., 2003, 524, 49-62.

    107. [107] X.-P. Wu, X.-Q. Gong, G. Lu, Phys. Chem. Chem. Phys., 2015, 17, 3544-3549.

    108. [108] M. B. Watkins, A. S. Foster, A. L. Shluger, J. Phys. Chem. C, 2007, 111, 15337-15341.

    109. [109] W. Zhang, X.-L. Ma, H. Xiao, M. Lei, J. Li, J. Phys. Chem. C, 2019, 123, 11763-11771.

    110. [110] M. Nolan, J. Mater. Chem., 2011, 21, 9160-9168.

    111. [111] A. B. Kehoe, D. O. Scanlon, G. W. Watson, Chem. Mater., 2011, 23, 4464-4468.

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  44
  • HTML全文浏览量:  4
文章相关
  • 收稿日期:  2019-09-29
  • 修回日期:  2019-10-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章