铂负载二氧化钛光催化剂在单波长下苯乙炔高选择性加氢

连菊红 柴玉超 祁育 郭向阳 关乃佳 李兰冬 章福祥

引用本文: 连菊红,  柴玉超,  祁育,  郭向阳,  关乃佳,  李兰冬,  章福祥. 铂负载二氧化钛光催化剂在单波长下苯乙炔高选择性加氢[J]. 催化学报, 2020, 41(4): 598-603. doi: S1872-2067(19)63453-4 shu
Citation:  Juhong Lian,  Yuchao Chai,  Yu Qi,  Xiangyang Guo,  Naijia Guan,  Landong Li,  Fuxiang Zhang. Unexpectedly selective hydrogenation of phenylacetylene to styrene on titania supported platinum photocatalyst under 385 nm monochromatic light irradiation[J]. Chinese Journal of Catalysis, 2020, 41(4): 598-603. doi: S1872-2067(19)63453-4 shu

铂负载二氧化钛光催化剂在单波长下苯乙炔高选择性加氢

  • 基金项目:

    国家自然科学基金(21633009);大连市杰出青年科学基金项目(2017RJ02);兴辽人才计划(XLYC1807241).

摘要: 苯乙烯是一种非常重要的化工原料,它是工业上生产聚苯乙烯、树脂和丁苯橡胶的重要单体,而苯乙烯单体中经常含有苯乙炔杂质,影响苯乙烯的聚合性能,因此研究苯乙炔选择性加氢生成苯乙烯具有十分重要的工业意义.传统的热催化苯乙炔加氢反应会用到易燃易爆的氢气,引起操作的危险性,因此,开发具有环境友好型的加氢反应体系具有很重要的意义.光催化加氢反应利用光生电子强的还原能力,还原质子产生活性的氢物种加氢,相较于传统的热催化使用氢气作为加氢源加氢,能够在温和的条件下实现高选择性加氢.基于此,本文利用Pt/TiO2作为光催化剂,甲醇作为加氢源实现了在385nm单波长光照下苯乙炔的高选择性加氢.
首先,我们利用光沉积的方法将Pt负载在TiO2的表面,通过透射电子显微镜图像和紫外可见吸收光谱表征了负载在TiO2表面Pt的颗粒分布和光学性质.结果表明负载的Pt的颗粒大约在5nm左右,Pt的负载改变了TiO2在可见光区的吸收性能.XPS结果显示,通过光沉积得到的Pt的价态为金属态和氧化态共存.光催化苯乙炔加氢实验表明,Pt/TiO2催化剂在室温常压条件下不仅具有高的苯乙炔光催化转化率,当光照达8h后,苯乙炔完全转化,而且在6h之内苯乙烯选择性保持在91.3%,具有高的苯乙烯选择性.通过对负载的Pt的含量进行了优化,筛选出当Pt的负载量为1wt%时,苯乙炔的转化率最高.为了对比,利用传统热催化的方法氢气作为加氢源进行了苯乙炔加氢实验,结果发现,使用氢气作为加氢源时,虽然苯乙炔的转化率为100%,但产物是过加氢的产物乙苯.这主要是因为在光催化反应过程中,TiO2导带上的电子迁移至Pt颗粒上,导致Pt的电子密度增加,Pt颗粒表面高的电子密度有利于加氢中间产物苯乙烯的脱附,因此,在光催化加氢过程中不会发生过加氢反应,具有高的苯乙烯选择性.同时,扩展实验表明,Pt/TiO2光催化剂对其他类型的炔烃加氢也具有高的选择性,表明Pt/TiO2光催化炔烃加氢具有普适性.由此可见,光催化炔烃加氢未来将成为一种环境友好而高效的方法.

English

    1. [1] C. Oger, L. Balas, T. Durand, J. M. Galano, Chem. Rev., 2013, 113, 1313-1350.

    2. [2] Y. Guo, Y. Zhang, Z. Zhao, Chin. J. Catal., 2018, 39, 181-189.

    3. [3] H. Lindlar, R. Dubuis, Org. Synth., 1966, 46, 89-92.

    4. [4] M. Armbruster, K. Kovnir, M. Behrens, D. Teschner, Y. Grin, R. Schlogl, J. Am. Chem. Soc., 2010, 132, 14745-14747.

    5. [5] T. Mitsudome, Y. Takahashi, S. Ichikawa, T. Mizugaki, K. Jitsukawa, K. Kaneda, Angew. Chem. Int. Ed., 2013, 52, 1481-1485.

    6. [6] E. D. Slack, C. M. Gabriel, B. H. Lipshutz, Angew. Chem. Int. Ed., 2014, 53, 14051-14054.

    7. [7] M. K. Karunananda, N. P. Mankad, J. Am. Chem. Soc., 2015, 137, 14598-14601.

    8. [8] Y. Sugano, Y. Shiraishi, D. Tsukamoto, S. Ichikawa, S. Tanaka, T. Hirai, Angew. Chem. Int. Ed., 2013, 52, 5295-5299.

    9. [9] Z. Chai, T. T. Zeng, Q. Li, L. Q. Lu, W. J. Xiao, D. Xu, J. Am. Chem. Soc., 2016, 138, 10128-10131.

    10. [10] A. Tanaka, K. Hashimoto, H. Kominami, Chem. Commun., 2017, 53, 4759-4762.

    11. [11] J. J. Zhong, Q. Liu, C. J. Wu, Q. Y. Meng, X. W. Gao, Z. J. Li, B. Chen, C. H. Tung, L. Z. Wu, Chem. Commun., 2016, 52, 1800-1803.

    12. [12] C. H. Hao, X. N. Guo, Y. T. Pan, S. Chen, Z. F. Jiao, H. Yang, X. Y. Guo, J. Am. Chem. Soc., 2016, 138, 9361-9364.

    13. [13] K. Imamura, Y. Okubo, T. Ito, A. Tanaka, K. Hashimoto, H. Kominami, RSC Adv., 2014, 4, 19883-19886.

    14. [14] K. Imamura, T. Yoshikawa, K. Hashimoto, H. Kominami, Appl. Catal. B, 2013, 134-135, 193-197.

    15. [15] J. Y. Lee, W. K. Jo, J. Hazard. Mater., 2016, 314, 22-31.

    16. [16] S. H. Li, S. Liu, J. C. Colmenares, Y. J. Xu, Green Chem., 2016, 18, 594-607.

    17. [17] H. Zhang, M. Zhao, T. Zhao, L. Li, Z. Zhu, Green Chem., 2016, 18, 2296-2301.

    18. [18] Z. Zhang, S. W. Cao, Y. Liao, C. Xue, Appl. Catal. B, 2015, 162, 204-209.

    19. [19] R. Long, Z. Rao, K. Mao, Y. Li, C. Zhang, Q. Liu, C. Wang, Z. Y. Li, X. Wu, Y. Xiong, Angew. Chem. Int. Ed., 2015, 54, 2425-2430.

    20. [20] H. Kominami, M. Higa, T. Nojima, T. Ito, K. Nakanishi, K. Hashimoto, K. Imamura, ChemCatChem, 2016, 8, 2019-2022.

    21. [21] M. Li, N. Zhang, R. Long, W. Ye, C. Wang, Y. Xiong, Small, 2017, 13, 1604173.

    22. [22] W. N. Wang, W. J. An, B. Ramalingam, S. Mukherjee, D. M. Niedzwiedzki, S. Gangopadhyay, P. Biswas, J. Am. Chem. Soc., 2012, 134, 11276-11281.

    23. [23] O. Rosseler, M. V. Shankar, M. Karkmaz-Le Du, L. Schmidlin, N. Keller, V. Keller, J. Catal., 2010, 269, 179-190.

    24. [24] A. Meng, J. Zhang, D. Xu, B. Cheng, J. Yu, Appl. Catal. B, 2016, 198, 286-294.

    25. [25] Z. H. N. Al-Azri, W. T. Chen, A. Chan, V. Jovic, T. Ina, H. Idriss, G. I. N. Waterhouse, J. Catal., 2015, 329, 355-367.

    26. [26] H. Chen, F. Zhang, X. Sun, W. Zhang, G. Li, Int. J. Hydrogen Energy, 2018, 43, 5331-5336.

    27. [27] N. Lakshmanareddy, V. Navakoteswara Rao, K. K. Cheralathan, E. P. Subramaniam, M. V. Shankar, J. Colloid. Interface. Sci., 2019, 538, 83-98.

    28. [28] G. Xin, B. Yu, Y. Xia, T. Hu, L. Liu, C. Li, J. Phys. Chem. C, 2014, 118, 21928-21934.

    29. [29] D. Deng, Y. Yang, Y. Gong, Y. Li, X. Xu, Y. Wang, Green Chem., 2013, 15, 2525-2531.

    30. [30] Z. M. Michalska, B. Ostaszewski, J. Zientarska, J. W. Sobczak, J. Mol. Catal. A, 1998, 129.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  341
  • HTML全文浏览量:  43
文章相关
  • 收稿日期:  2019-11-11
  • 修回日期:  2019-11-30
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章