金属-有机分子笼在g-C3N4半导体上的固定以提高光催化产氢性能

王原溥 刘靓 吴东俊 郭靖 石建英 刘军民 苏成勇

引用本文: 王原溥,  刘靓,  吴东俊,  郭靖,  石建英,  刘军民,  苏成勇. 金属-有机分子笼在g-C3N4半导体上的固定以提高光催化产氢性能[J]. 催化学报, 2019, 40(8): 1198-1204. doi: S1872-2067(19)63387-5 shu
Citation:  Yuanpu Wang,  Liang Liu,  DongJun Wu,  Jing Guo,  Jianying Shi,  Junmin Liu,  Chengyong Su. Immobilization of metal-organic molecular cage on g-C3N4 semiconductor for enhancement of photocatalytic H2 generation[J]. Chinese Journal of Catalysis, 2019, 40(8): 1198-1204. doi: S1872-2067(19)63387-5 shu

金属-有机分子笼在g-C3N4半导体上的固定以提高光催化产氢性能

  • 基金项目:

    国家自然科学基金(21875293,21821003,21890380,21720102007,21572280);广东省自然科学基金(2016A030313268);广东省科技计划项目(201804010386,201707010114);中央高校科研业务费(17lgzd18,17lgzd01);广东省燃料电池技术重点实验室开放基金.

摘要: 可见光驱动的光催化水制氢是一种太阳能转化策略,各种异质结半导体和均相分子器件在光催化领域取得了很大的进展.本课题组曾开发了一种含多个吸光中心和催化中心的金属-有机自组装分子笼Pd6(RuL38(BF428(MOC-16),并研究了其光催化分解水产氢性能.尽管该笼子定向电子通过多个独立的通道转移实现了高效制氢,但仍存在均相催化剂的典型缺点,即在光催化过程中,笼子分解后钯纳米颗粒团聚致使催化剂失活.而二维片层结构的石墨相氮化碳(g-C3N4)具有大量的共轭π电子和终止边缘以构成氢键,是构建杂化材料的理想基底.在此基础上,本文采用简单的制备方法将MOC-16分立固定在g-C3N4基质上,得到异质体系MOC-16/g-C3N4,相比其均相组分,该新型催化剂具有更优良的光催化分解水产氢性能.本文设计了空白的催化产氢实验,比较了MOC-16中各部分及分子笼在催化产氢体系中的作用,并采用X射线衍射(XRD),傅里叶红外光谱,透射电镜,紫外可见光谱(UV-Vis),瞬态光电流响应(i-t)、X射线光电子能谱(XPS)等手段研究了MOC-16和g-C3N4之间的相互作用和杂化材料MOC-16/g-C3N4的光催化产氢机理.
10 wt% MOC-16/g-C3N4表现出最高的产氢速率2021 μmol g-1 h-1,并优于空白对照组的产氢效果,循环15 h时的TON(Pd)为517,TOF(Pd)值约36 h-1,与MOC-16均相催化剂相比,催化剂MOC-16/g-C3N4在产氢效率和稳定性上有明显提升.形貌结构表征显示,MOC-16不与g-C3N4形成新的共价键,也不改变g-C3N4原有形貌结构,MOC-16以配合物形式均匀分散在g-C3N4基底材料上.UV-Vis结果表明,MOC-16/g-C3N4的紫外-可见吸收峰结合了两种组分的吸收峰,杂化材料的可见光区的吸收峰延伸至700 nm左右.随着MOC-16负载量增大,杂化材料MOC-16/g-C3N4的吸光范围越大.i-t结果进一步表明,MOC-16和g-C3N4之间存在有效的电子转移.XPS结果显示,杂化前后,MOC-16中Pd价态未发生改变,但峰位置发生位移,Pd 3d的电子结合能分别从343.1和338.0移动到342.6和337.3 eV,进一步表明杂化后MOC-16和g-C3N4间存在相互作用.然而经过三轮连续循环产氢后,部分二价钯被还原为零价,表明固定在g-C3N4表面的MOC-16在光催化过程中光生电子不断流向Pd,电子消耗缓慢导致Pd-N键的断裂.
我们提出了MOC-16/C3N4复合光催化剂可能的光催化产氢机制.MOC-16的LUMO和HOMO能级分别为-0.95和1.55 V(vs.NHE),g-C3N4的导带在-1.09至-1.3 V,价带在1.53至1.4 V之间,所以光生电子从g-C3N4转移到MOC-16在热力学上是可行的.光生电子转移到MOC-16分子的Pd上,Pd作为助催化剂为H2的产生提供活性位点,而TEOA作为牺牲试剂,则在g-C3N4表面消耗光生空穴.

English

    1. [1] J. Shi, H. Cui, Z. Liang, X. Lu, Y. Tong, C. Su, H. Liu, Energy Environ. Sci., 2011, 4, 466-470.

    2. [2] Z. Guo, S. Zhu, Y. Yong, X. Zhang, X. Dong, J. Du, J. Xie, Q. Wang, Z. Gu, Y. Zhao, Adv. Mater., 2017, 2, 1704136.

    3. [3] W. Hu, L. Lin, C. Yang, J. Dai, J. Yang, Nano Lett., 2016, 16, 1675-1682.

    4. [4] Y. Pan, D. Li, H. L. Jiang, Chem. Eur. J., 2018, 24, 18403-18407.

    5. [5] J. He, L. Chen, F. Wang, Y. Liu, P. Chen, C. T. Au, S. F. Yin, ChemSus-Chem., 2016, 9, 624-630.

    6. [6] J. He, L. Chen, Z. Q. Yi, C. T. Au, S. F. Yin, Ind. Eng. Chem. Res., 2016, 55, 8327-8333.

    7. [7] S. Chen, K. Li, F. Zhao, L. Zhang, M. Pan, Y. Z. Fan, J. Guo, J. Shi, C. Y. Su, Nat. Commun., 2016, 7, 13169

    8. [8] J. Chen, C. L. Dong, D. Zhao, Y. C. Huang, X. Wang, L. Samad, L. Dang, M. Shearer, S. Shen, L. Guo, Adv. Mater., 2017, 29, 1606198.

    9. [9] H. Cui, J. Y. Shi, H. Liu, Chin. J. Catal., 2015, 36, 969-974.

    10. [10] H. Cui, D. Li, G. Liu, Z. Liang, J. Y. Shi, Chin. J. Catal., 2015, 36, 550-554.

    11. [11] K. Li, L. Y. Zhang, C. Yan, S. C. Wei,.M. Pan, L. Zhang, C. Y. Su, J. Am. Chem. Soc., 2014, 136, 4456-4459.

    12. [12] F. X. Gomis-Rüth, J Biol. Chem., 2009, 284, 15353-15357.

    13. [13] C. A. Martin, D. Ding, J. K. Sørensen, T. Bjørnholm, J. M. van Ruit-enbeek, S. H. J. van der Zant, J. Am. Chem. Soc., 2008, 130, 13198-13199.

    14. [14] W. R. McNamara, R. L. Milot, H. E. Song, R. C. Snoeberger Iii, V. S. Batista, C. A. Schmuttenmaer, G. W. Brudvig, R. H. Crabtree, Energy Environ. Sci., 2010, 3, 917-923.

    15. [15] R. Kuriki, M. Yamamoto, K. Higuchi, Y. Yamamoto, M. Akatsuka, D. Lu, S. Yagi, T. Yoshida, O. Ishitani, K. Maeda, Angew. Chem. Int. Ed., 2017, 56, 4867-4871.

    16. [16] X. Lu, K. Xu, P. Chen, K. Jia, S. Liu, C. Wu, J. Mater. Chem. A, 2014, 2, 18924-18928.

    17. [17] K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti, K. Domen, J. Phys. Chem. C, 2009, 113, 4940-4947.

    18. [18] X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carls-son, K. Domen, M. Antonietti, Nat. Mater., 2008, 8, 76-80.

    19. [19] Z. Liu, X. Lu, Chin. J. Catal., 2018, 39, 1527-1533.

    20. [20] J. Ge, Y. Liu, D. Jiang, L. Zhang, P. Du, Chin. J. Catal., 2019, 40, 160-167.

    21. [21] C. Chang, Y. Fu, M. Hu, C. Wang, G. Shan, L. Zhu, Appl. Catal. B, 2013, 142-143, 553-560.

    22. [22] W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, S. P. Chai, Chem. Rev., 2016, 116, 7159-7329.

    23. [23] L. Sun, C. Liu, J. Li, Y. Zhou, H. Wang, P. Huo, C. Ma, Y. Yan, Chin. J. Catal., 2019, 40, 80-94.

    24. [24] C. Yang, W. Teng, Y. Song, Y. Cui, Chin. J. Catal., 2018, 39, 1615-1624.

    25. [25] J. Li, P. Yan, K. Li, W. Cen, X. Yu, S. Yuan, Y. Chu, Z. Wang, Chin. J. Catal., 2018, 39, 1695-1703.

    26. [26] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Müller, R. Schlögl, J. M. Carlsson, J. Mater. Chem., 2008, 18, 4893-4908.

    27. [27] S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater., 2015, 27, 2150-2176.

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  1499
  • HTML全文浏览量:  351
文章相关
  • 收稿日期:  2019-03-01
  • 修回日期:  2019-04-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章