铁氧化物纳米棒负载金纳米颗粒催化剂载体表面结构调控对CO氧化的影响

石文 高彤彤 张历云 马彦爽 刘忠文 张炳森

引用本文: 石文,  高彤彤,  张历云,  马彦爽,  刘忠文,  张炳森. 铁氧化物纳米棒负载金纳米颗粒催化剂载体表面结构调控对CO氧化的影响[J]. 催化学报, 2019, 40(12): 1884-1894. doi: S1872-2067(19)63374-7 shu
Citation:  Wen Shi,  Tongtong Gao,  Liyun Zhang,  Yanshuang Ma,  Zhongwen Liu,  Bingsen Zhang. Tailoring the surface structures of iron oxide nanorods to support Au nanoparticles for CO oxidation[J]. Chinese Journal of Catalysis, 2019, 40(12): 1884-1894. doi: S1872-2067(19)63374-7 shu

铁氧化物纳米棒负载金纳米颗粒催化剂载体表面结构调控对CO氧化的影响

  • 基金项目:

    国家自然科学基金(21773269,21761132025,91545119,21703262);中国科学院青年创新促进会(2015152);辽宁省自然科学基金和沈阳材料科学国家研究中心联合基金(20180510047).

摘要: 自1987年Haruta等首次发现氧化物负载金催化剂具有优异的低温催化CO氧化活性以来,纳米金催化剂由于其独特的物理化学性质引起了催化科学工作者的极大兴趣.大量研究致力于揭示金纳米颗粒的尺寸、价态、制备方法以及活化过程对其低温催化CO氧化的性能影响机制.在众多的负载型金催化剂体系中,可还原性金属氧化物负载Au纳米粒子催化剂由于能产生较强的金属-载体相互作用(SMSI)或做为助催化剂组分提供氧活化位点而受到广泛研究.其中,铁氧化物负载金被认为是最具有潜力的低温催化CO氧化反应催化剂之一;研究表明,其催化性能不仅取决于金纳米粒子的尺寸,而且在很大程度上取决于氧化铁载体的表面性质.尽管氧化铁负载的金催化剂具有非常高的活性,并很好地从传统的动力学角度解释了其反应机理,但氧化铁的表面性质对负载金属-载体间的界面相互作用及反应性能的影响机制仍存在争议,尤其是针对氧化铁表面性质对负载金纳米粒子分散性和稳定性影响的研究仍相对较少,并且缺少直观的研究手段.基于此,本文将预先制备的β-FeOOH前驱体在不同温度氩气气氛中焙烧处理,制备具有不同表面性质的铁氧化物纳米棒,然后负载Au纳米粒子,并应用于CO氧化反应.进一步利用X射线衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等表征手段对Au纳米粒子与氧化铁载体间的相互作用进行了细致表征,揭示了不同氧化铁表面性质对负载金纳米粒子的分散性、化学态的影响以及在一氧化碳氧化反应中的活性和稳定性的差异原因.
TEM结果表明,焙烧前不同氧化铁载体上的Au纳米粒子均高度分散,且颗粒尺寸相近,平均粒径约为1.0 nm;焙烧后不同载体上的Au纳米粒子尺寸均有不同程度的长大.粒径统计结果显示,FeOOH载体表面Au纳米粒子的平均粒径尺寸约为2.5 nm,且以面心立方结构的单晶形式存在;而FeOx和α-Fe2O3载体表面的Au纳米粒子的平均粒径尺寸则分别为3.9和3.5 nm,且存在大量多重孪晶结构.结合XPS和性能测试结果发现,焙烧前Au/FeOOH催化剂表面的羟基有助于带正电的Au吸附和解离氧气,从而具有低温CO氧化反应活性,但长时间的稳定性测试表明,反应条件下FeOOH表面羟基不稳定,会逐渐脱除,从而导致催化活性下降.将催化剂预先在200 ℃空气中焙烧,不同氧化铁载体上金的化学状态会由金属阳离子部分转变为零价金,同时伴随着载体表面羟基的消失.其中,FeOOH表面含有高于其它铁氧化物的Au0,且Au/FeOOH催化剂表现出对CO最优的反应性能和较好的稳定性,说明焙烧处理后催化剂的反应性能与小尺寸的零价金物种密切相关.
此外,我们还将相同位置-电子显微学方法(IL-TEM)应用于气相反应体系中,探索了金/铁氧化物系列催化剂的结构演变.结果表明,相比于Au/FeOOH和Au/α-Fe2O3,FeOx载体表面独特的孔结构使负载于其上的Au纳米粒子在反应条件下会发生明显的类奥斯特瓦尔德熟化行为,并通过改变反应气中CO和O2的计量比推测该过程可能是由于Au与CO组分相互作用导致,从而揭示了长时间反应条件下其催化CO氧化活性下降的原因.本文通过结合传统的表征手段和气相IL-TEM方法,对金/铁氧化物催化剂的金属-载体相互作用进行了直观研究,并为新型催化剂的开发和设计提供了参考.

English

    1. [1] A. Stephen, K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed., 2006, 45, 7896-7936.

    2. [2] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett., 1987, 405-408.

    3. [3] B. Shao, Y. Y. Zhang, J. H. Huang, B. T. Qiao, Y. Su, S. Miao, Y. Zhou, D. Li, W. X. Huang, W. J. Shen, Small Methods, 2018, 2, 1800273.

    4. [4] Y. Guo, D. Gu, Z. Jin, P. P. Du, R. Si, J. Tao, W. Q. Xu, Y. Y. Huang, S. Senanayake, Q. S. Song, C. J. Jia, F. Schuth, Nanoscale, 2015, 7, 4920-4928.

    5. [5] S. Hu, W. Xiao, W. W. Yang, J. Yang, Y. R. Fang, J. X. Xiong, Z. Luo, H. T. Deng, Y. B. Guo, L. Z. Zhang, J. Ding, ACS Appl. Mater. Interfaces, 2018, 10, 17167-17174.

    6. [6] F. Kettemann, S. Witte, A. Birnbaum, B. Paul, G. Clavel, N. Pinna, K. Rademann, R. Kraehnert, J. Polte, ACS Catal., 2017, 7, 8247-8254.

    7. [7] L. F. Allard, A. Borisevich, W. L. Deng, R. Si,M. Flytzani-Stephanopoulos, S. H. Overbury, J. Electron Microsc., 2009, 58, 199-212.

    8. [8] M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, R. J. Behm, J. Catal., 2001, 197, 113-122.

    9. [9] S. Najafishirtari, P. Guardia, A. Scarpellini, M. Prato, S. Marras, L. Mannaa, M. Colombo, J. Catal., 2016, 338, 115-123.

    10. [10] S. L. Chen, L. F. Luo, Z. Q. Jiang, W. X. Huang, ACS Catal., 2015, 5, 1653-1662.

    11. [11]

      [11]

    12. [11] S. Lee, C. Y. Fan, T. P. Wu, S. L. Anderson, J. Am. Chem. Soc., 2004, 126, 5682-5683.

    13. [12] D. C. Meier, D. W. Goodman, J. Am. Chem. Soc., 2003, 126, 1892-1899.

    14. [13] M. Haruta, Faraday Discuss, 2011, 152, 11-32.

    15. [14] S. H. Overbury, V. Schwartz, D. R. Mullins, W. F. Yan, S. Dai, J. Catal., 2006, 241, 56-65.

    16. [15] M. Khoudiakov, M. C. Gupta, S. Deevi, Appl. Catal. A, 2005, 291, 151-161.

    17. [16] M. Haruta, S. Dsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon, J. Catal., 1993, 144, 175-192.

    18. [17] C. W. Han, T. Choksi, C. Milligan, P. Majumdar, M. Manto, Y. R. Cui, X. H. Sang, R. R. Unocic, D. Zemlyanov, J. Greeley, C. Wang, J. Greeley, V. Ortalan, Nano Lett., 2017, 17, 4576-4582.

    19. [18] S. Gatla, D. Aubert, G. Agostini, O. Mathon, S. Pascarelli, T. Lunkenbein, M. G. Willinger, H. Kaper, ACS Catal., 2016, 6, 6151-6155.

    20. [19] H. L. Tang, F. Liu, J. K. Wei, B. T. Qiao, K. F. Zhao, Y. Su, C. Z. Jin, L. Li, J. Y. (Jimmy) Liu, J. H. Wang, T. Zhang, Angew. Chem. Int. Ed., 2016, 55, 10606-10611.

    21. [20] D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F. Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight, G. J. Hutchings, Science, 2006, 311, 362-365.

    22. [21] M. Comotti, W. C. Li, B. Spliethoff, F. Schuth, J. Am. Chem. Soc., 2006, 128, 917-924.

    23. [22] P. Schlexer, D. Widmann, R. J. Behm, G. Pacchioni, ACS Catal., 2018, 8, 6513-6525.

    24. [23] S. D. Xu, H. X. Li, J. Du, J. H. Tang, L. Wang, ACS Sustain. Chem. Eng., 2018, 6, 6418-6424.

    25. [24] S. T. Daniells, A. R. Overweg, M. Makkee, J. A. Moulijn, J. Catal., 2005, 230, 52-65.

    26. [25] T. Yan, D. W. Redman, W. Y. Yu, D. W. Flaherty, J. A. Rodriguez, C. B. Mullins, J. Catal., 2012, 294, 216-222.

    27. [26] H. Ha, S. Yoon, K. An, H. Y. Kim, ACS Catal., 2018, 8, 11491-11501.

    28. [27] X. J. Wei, B. Shao, Y. Zhou, Y. Li, C. Jin, J. Y. Liu, W. J. Shen, Angew. Chem. Int. Ed., 2018, 57, 11289-11293.

    29. [28] L. Li, A. Wang, B. Qiao, J. Lin, Y. Q. Huang, X. D. Wang, T. Zhang, J. Catal., 2013, 299, 90-100.

    30. [29] A. A. Herzing, C. J. Kiely, A. F. Carley, P. Landon, G. J. Hutchings, Science., 2008, 321, 1331-1335.

    31. [30] I. X. Green, W. J. Tang, M. Neurock, J. T. Yates Jr., Science, 2011, 333, 736-739.

    32. [31] X. Y. Liu, M. H. Liu, Y. C. Luo, C. Y. Mou, S. D. Lin, H. K. Cheng, J. M. Chen, J. F. Lee, T. S. Lin, J. Am. Chem. Soc., 2012, 134, 10251-10258.

    33. [32] Y. Wang, D. Widmann, M. Heenemann, T. Diemant, J. Biskupek, R. Schlögl, R. J. Behm, J. Catal., 2017, 354, 46-60.

    34. [33] Y. Suchorski, S. M. Kozlov, I. Bespalov, Z. Budinska, M. Datler, D. Vogel, K. M. Neyman, G. Rupprechter, Nat. Mater., 2018, 17, 519-522.

    35. [34] Z. Y. Duan, G. Henkelman, ACS Catal., 2018, 8, 1376-1383.

    36. [35] I. Ro, I. B. Aragao, J. P. Chada, Y. Y. Liu, K. R. R. Dones, M. R. Ball, D. Zanchet, J. A. Dumesic, G. W. Huber, J. Catal., 2018, 358, 19-26.

    37. [36] Y. S. Ma, L. Y. Zhang, W. Shi, Y. M. Niu, B. S. Zhang, D. S. Su, Chin. Chem. Lett., 2019, 30, 183-186.

    38. [37] D. S. Su, B. S. Zhang, R. Schlögl, Chem. Rev., 2015, 115, 8, 2818-2882.

    39. [38] Z. C. Canbek, R. Cortes-Huerto, F. Testard, O. Spalla, S. Moldovan, O. Ersen, A. Wisnet, G. Wang, J. Goniakowski, C. Noguera, N. Menguy, Cryst. Growth Des., 2015, 15, 3637-3644.

    40. [39] S. P. Cho, M. A. Bratescu, N. Saito, O. Takai, Nanotechnology, 2011, 22, 455701, 1-7.

    41. [40] G. Corro, S. Cebada, U. Pal, J. L. G. Fierro, J. Catal., 2017, 347, 148-156.

    42. [41] A. A. Zhang, L. Zhang, G. J. Jing, H. Zhang, S. Wang, H. Q. Su, S. H. Zeng, Int. J. Hydrogen Energy, 2018, 43, 10322-10333.

    43. [42] J. C. Dupin, D. Gonbeau, P. Vinatierb, A. Levasseur, Phys. Chem. Chem. Phys., 2000, 2, 1319-1324.

    44. [43] G. J. Hutchings, M. S. Hall, A, F. Carley, B. E. Solsona, C. J. Kiely, A. Herzing, M. Makkee, J. A. Moulijn, A. Overweg, J. C. Fierro-Gonzalez, B. C. Gates, J. Catal., 2006, 242, 71-81.

    45. [44] L. P. Zeng, K. Z. Li, H. Wang, H. Yu, X. Zhu, Y. G. Wei, P. H. Ning, C. Z. Shi, Y. M. Luo, J. Phys. Chem. C, 2017, 121, 12696-12710.

    46. [45] L. Wolski, I. Sobczak, M. Ziolek, J. Catal., 2017, 354, 100-112.

    47. [46] Y. P. Zhai, D. Pierre, R. Si, W. L. Deng, P. Ferrin, A. U. Nilekar, G. W. Peng, J. A. Herron, D. C. Bell, H. Saltsburg, M. Mavrikakis, M. Flytzani-Stephanopoulos, Science, 2010, 329, 1633-1636.

    48. [47] G. X. Chen, Y. Zhao, G. Fu, P. N. Duchesne, L. Gu, Y. P. Zheng, X. F. Weng, M. S. Chen, P. Zhang, C. W. Pao, J. F. Lee, N. F. Zheng, Science, 2014, 344, 495-499.

    49. [48] M. Yang, S. Li, Y. Wang, J. A. Herron, Y. Xu, L. F. Allard, S. Lee, J. Huang, M. Mavrikakis, M. Flytzani-Stephanopoulos, Science, 2014, 346, 1498-1501.

    50. [49] J. C. Meier, I. Katsounaros, C. Galeano, H. J. Bongard, A. A. Topalov, A. Kostka, A. Karsarolinachin, F. Schuth, K. J. J. Mayrhofer, Energy Environ. Sci., 2012, 5, 9319-9330.

    51. [50] W. Shi, B. S. Zhang, Y. M. Lin, Q. Wang, Q. Zhang, D. S. Su, ACS Catal., 2016, 6, 7844−7854.

    52. [51] Masliuka, M. Swobodaa, G. A. Sillera, R. Schlögla, T. Lunkenbeina, Ultramicroscopy, 2018, 195, 121-128.

    53. [52] A. Baldan, J. Mater. Sci., 2002, 37, 2171-2202.

    54. [53] T. W. Hansen, A. T. Delariva, S. R. Challa, A. K. Datye, Acc. Chem. Res., 2013, 46, 1720-1730.

    55. [54] F. Yang, M. S. Chen, D. W. Goodman, J. Phys. Chem C, 2009, 113, 254-260.

    56. [55] S. C. Parker, C. T. Campbell, Phys. Rev. B, 2007, 75, 035430/1-035430/15.

    57. [56] S. C. Parker, C. T. Campbell, Top. Catal., 2007, 44, 3-13.

  • 加载中
计量
  • PDF下载量:  9
  • 文章访问数:  1081
  • HTML全文浏览量:  171
文章相关
  • 收稿日期:  2019-03-02
  • 修回日期:  2019-04-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章