Brönsted酸性离子液体催化α-羟基丙酮和2-苯基吲哚反应合成苯并[a]咔唑

李明浩 吴丰田 顾彦龙

引用本文: 李明浩,  吴丰田,  顾彦龙. Brönsted酸性离子液体催化α-羟基丙酮和2-苯基吲哚反应合成苯并[a]咔唑[J]. 催化学报, 2019, 40(8): 1135-1140. doi: S1872-2067(19)63370-X shu
Citation:  Minghao Li,  Fengtian Wu,  Yanlong Gu. Brönsted acidic ionic liquid catalyzed synthesis of benzo[a]carbazole from renewable acetol and 2-phenylindoles in a biphasic system[J]. Chinese Journal of Catalysis, 2019, 40(8): 1135-1140. doi: S1872-2067(19)63370-X shu

Brönsted酸性离子液体催化α-羟基丙酮和2-苯基吲哚反应合成苯并[a]咔唑

  • 基金项目:

    国家自然科学基金(21761132014,21872060);中央高校基本科研业务费专项资金(2016YXZD033,2019kfyXJJS072);材料化学与服役失效湖北省重点实验室开放基金(2017MCF01K).

摘要: 以生物质基平台化合物为原料合成含氧/氮杂环是实现生物质高值转化的重要途径.α-羟基丙酮可通过生物质分段热解获得,是一种重要的生物质平台化合物.尽管吡嗪,恶唑啉,呋喃,和喹喔啉等α-羟基丙酮衍生化杂环化合物已有报道,但将α-羟基丙酮转化为其它类型杂环仍具有很大的吸引力.
苯并[a]咔唑化合物因其在医药和光学材料有广泛的应用而备受关注.在过去二十年里,开发出了许多合成苯并[a]咔唑的方法,其中从简单易得的2-苯基吲哚出发,构建苯并[a]咔唑的方法最具吸引力,但目前基于2-苯基吲哚合成苯并[a]咔唑的报道只有4例:(1)ln(OTf)3催化2-苯基吲哚和炔丙基醚的[4+2]反应;(2)Pd催化2-苯基吲哚与端炔氧化环化;(3)Rh(Ⅲ)催化2-苯基吲哚与α-重氮羰基化合物串联环化;(4)BiCl3催化2-苯基吲哚与α-溴乙缩醛苯环化反应.考虑到苯并[a]咔唑化合物广泛的应用性,从简单易得的原料出发,发展新型的(例如非过渡金属催化)构建该类杂环的方法十分有必要.
本文报道了Brönsted酸性离子液体催化2-苯基吲哚和生物质基α-羟基丙酮的串联反应,构建了一系列苯并[a]咔唑化合物.首先通过对催化剂、溶剂和温度等参数的筛选,确定了最佳反应条件为1a(0.3mmol),2a(0.45mmol),TfOH(10 mol%),4c(2.0 equiv.),H2O(16.0 equiv.),硝基乙烷(1.0 mL),95℃,1h.在标准条件下,给电子和拉电子基团取代的2-苯基吲哚都可以很好地参与反应,反应收率在70%-92%之间,相对富电子2-苯基吲哚,较贫的2-苯基吲哚反应活性更高,2-呋喃或噻吩吲哚也可以顺利参与反应.在考察α-羟基丙酮同系物的反应活性时发现,α-羟基苯乙酮和α-羟基乙缩醛可以很好地参与反应,但在α-羟基苯丙酮的α位引入取代基时,目标产物不能有效生成.值得说明的是,在合成的苯并[a]咔唑化合物中,3k具有抗白血病和抗肿瘤活性,另外反应中离子液体催化体系可以重复使用5次.

English

    1. [1] R. A. Sheldon, Chem. Soc. Rev., 2012, 41, 1437-1451.

    2. [2] C. J. Li, B. M. Trost, Proc. Nat. Acad. Sci. USA, 2008, 105, 13197-13202.

    3. [3] C. Grondal, M. Jeanty, D. Enders, Nat. Chem., 2010, 2, 167-178.

    4. [4] H. Pellissier, Adv. Synth. Catal., 2012, 354, 237-294.

    5. [5] L. F. Tietze, T. Kinzel, C. C. Brazel, Acc. Chem. Res., 2009, 42, 367-378.

    6. [6] S. F. Mayer, W. Kroutil, K. Faber, Chem. Soc. Rev., 2001, 30, 332-339.

    7. [7] Q. Liao, X. Yang, C. Xi, J. Org. Chem., 2014, 79, 8507-8515.

    8. [8] L. J. Sebren, J. J. Devery, C. J. R. Stephenson, ACS Catal., 2014, 4, 703-716.

    9. [9] J. Jiang, L.-Z. Gong, Bronsted acid-catalyzed cascade reactions, (Ed.) P.-F. Xu, W. Wang, Catal. Cascade React., 2014, 53-122.

    10. [10] F. Lv, S. Liu, W. Hu, Asian J. Org. Chem., 2013, 2, 824-836.

    11. [11] R.-J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries, Chem. Rev., 2013, 113, 1499-1597.

    12. [12] R. P. Bhusal, J. Sperry, Green Chem., 2016, 18, 2453-2459.

    13. [13] Z. Li, X. Tang, Y. Jiang, M. Zuo, Y. Wang, W. Chen, X. Zeng, Y. Sun, L. Lin, Green Chem., 2016, 18, 2971-2975.

    14. [14] B. Wozniak, Y. Li, S. Hinze, S. Tin, J. G. de Vries, Eur. J. Org. Chem., 2018, 2009-2012.

    15. [15] D. E. Resasco, S. P. Crossley, Catal. Today, 2015, 257, 185-199.

    16. [16] L. Song, M. Zheng, J. Pang, J. Sebastian, W. Wang, M. Qu, J. Zhao, X. Wang, T. Zhang, Green Chem., 2017, 19, 3515-3519.

    17. [17] R. Pandya, R. Mane, C. V. Rode, Catal. Sci. Technol., 2018, 8, 2954-2965.

    18. [18] A. Gangjee, X. Lin, R. L. Kisliuk, J. J. McGuire, J. Med. Chem., 2005, 48, 7215-7222.

    19. [19] S. A. Raw, C. D. Wilfred, R. J. K. Taylor, Org. Biomol. Chem., 2004, 2, 788-796.

    20. [20] Y.-Q. Wang, X.-H. Li, Q. He, Y. Chen, Y.-Y. Xie, J. Ding, Z.-H. Miao, C.-H. Yang, Eur. J. Med. Chem., 2011, 46, 5878-5884.

    21. [21] A. Segall, H. Pappal, R. Casaubon, G. Martin, R. Bergoc, M. T. Piz-zomol, Eur. J. Med. Chem., 1995, 30, 165-169.

    22. [22] E. Von Angerer, J. Prekajac, J. Med. Chem., 1986, 29, 380-386.

    23. [23] U. Pindur, T. Lemster, Recent Res. Dev. Org. Bioorg. Chem. 1997, 1, 33-54.

    24. [24] M. M. Oliveira, M. A. Salvador, P. J. Coelho, L. M. Carvalho, Tetrahedron, 2005, 61, 1681-1691.

    25. [25] C.-C. Chen, L.-Y. Chin, S.-C. Yang, M.-J. Wu, Org. Lett., 2010, 12, 5652-5655.

    26. [26] K. Hirano, Y. Inaba, N. Takahashi, M. Shimano, S. Oishi, N. Fujii, H. Ohno, J. Org. Chem., 2011, 76, 1212-1227.

    27. [27] C.-C. Chen, S.-C. Yang, M.-J. Wu, J. Org. Chem., 2011, 76, 10269-10274.

    28. [28] R. Xie, Y. Ling, H. Fu, Chem. Commun., 2012, 48, 12210-12212.

    29. [29] X.-F. Xia, N. Wang, L.-L. Zhang, X.-R. Song, X.-Y. Liu, Y.-M. Liang, J. Org. Chem., 2012, 77, 9163-9170.

    30. [30] T. Nanjo, S. Yamamoto, C. Tsukano, Y. Takemoto, Org. Lett., 2013, 15, 3754-3757.

    31. [31] S. Protti, A. Palmieri, M. Petrini, M. Fagnoni, R. Ballini, A. Albinia, Adv. Synth. Catal., 2013, 355, 643-646.

    32. [32] J. Yang, Q. Zhang, W. Zhang, W. Yu, RSC Adv., 2014, 4, 13704-13707.

    33. [33] J.-R. Huang, L. Qin, Y.-Q. Zhu, Q. Songa, L. Dong, Chem. Commun., 2015, 51, 2844-2847.

    34. [34] Y. Li, Z. Pang, T. Zhang, J. Yang, W. Yu, Tetrahedron, 2015, 71, 3351-3358.

    35. [35] C.-W. Kuo, A. Konala, L. Lin, T.-T. Chiang, C.-Y. Huang, T.-H. Yang, V. Kavala, C.-F. Yao, Chem. Commun., 2016, 52, 7870-7873.

    36. [36] I. T. Alt, B. Plietker, Angew. Chem. Int. Ed., 2016, 55, 1519-1522.

    37. [37] L. Wu, G. Deng, Y. Liang, Org. Biomol. Chem., 2017, 15, 6808-6812.

    38. [38] S. Parisien-Collette, C. Cruché, X. Abel-Snape, S. K. Collins, Green Chem., 2017, 19, 4798-4803.

    39. [39] T. Tsuchimoto, H. Matsubayashi, M. Kaneko, E. Shirakawa, Y. Kawakami, Angew. Chem. Int. Ed., 2005, 44, 1336-1340.

    40. [40] T. Tsuchimoto, H. Matsubayashi, M. Kaneko, Y. Nagase, T. Miya-mura, E. Shirakawa, J. Am. Chem. Soc., 2008, 130, 15823-15835.

    41. [41] Z. Shi, S. Ding, Y. Cui, N. Jiao, Angew. Chem., Int. Ed., 2009, 48, 7895-7898.

    42. [42] Z. Zhang, K. Liu, X. Chen, S.-J. Su, Y. Deng, W. Zeng, RSC Adv., 2017, 7, 30554-30558.

    43. [43] B. Li, B. Zhang, X. Zhang, X. Fan, Chem. Commun., 2017, 53, 1297-1300.

    44. [44] F. Wu, W. Huang, L. Yi, J. Yang, Y. Gu, Adv. Synth. Catal., 2018, 360, 3318-3330.

    45. [45] A. S. Amarasekara, Chem. Rev., 2016, 116, 6133-6183.

    46. [46] C. Wu, L.-H. Lu, A. Z. Peng, G.-K. Jia, C. Peng, Z. Cao, Z. Tang, W.-M. He, X, Xu, Green Chem., 2018, 20, 3683-3688.

    47. [47] L.-Y. Xie, S. Peng, L.-H. Lu, J. Hu, W.-H. Bao, F. Zeng, Z. Tang, X. Xu, W.-M. He, ACS Sustainable Chem. Eng., 2018, 6, 7989-7994.

    48. [48] C. Wu, H.-J. Xiao, S.-W. Wang, M.-S. Tang, Z.-L. Tang, W. Xia, W.-F. Li, Z. Cao, W.-M. He, ACS Sustainable Chem. Eng., 2019, 7, 2169-2175.

    49. [49] J. Xu, W. Huang, R. Bai, Y. Queneau, F. Jerome, Y. Gu, Green Chem., 2019, DOI: 10.1039/C8GC04000A.

    50. [50] A. Taheri, C. Liu, B. Lai, C. Cheng, X. Pan, Y. Gu, Green Chem., 2014, 16, 3715-3719.

    51. [51] S. Santra, A. Majee, A. Hajra, Tetrahedron Lett., 2011, 52, 3825-3827.

    52. [52] R. Sanz, D. Miguel, F. Rodríguez, Angew. Chem. Int. Ed., 2008, 47, 7354-7357.

    53. [53] G. Li, Y. Liu, J. Org. Chem., 2010, 75, 3526-3528.

    54. [54] E. Álvarez, O. Nieto-Faza, C. Silva López, M. A. Fernán-dez-Rodríguez, R. Sanz, Chem. Eur. J., 2015, 21, 12889-12893.

  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  742
  • HTML全文浏览量:  135
文章相关
  • 收稿日期:  2019-03-13
  • 修回日期:  2019-04-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章