介孔碳作为非金属丙烷脱氢催化剂:孔道结构和表面性质的影响

胡忠攀 任金涛 杨丹丹 王政 袁忠勇

引用本文: 胡忠攀,  任金涛,  杨丹丹,  王政,  袁忠勇. 介孔碳作为非金属丙烷脱氢催化剂:孔道结构和表面性质的影响[J]. 催化学报, 2019, 40(9): 1385-1394. doi: S1872-2067(19)63334-6 shu
Citation:  Zhong-Pan Hu,  Jin-Tao Ren,  Dandan Yang,  Zheng Wang,  Zhong-Yong Yuan. Mesoporous carbons as metal-free catalysts for propane dehydrogenation: Effect of the pore structure and surface property[J]. Chinese Journal of Catalysis, 2019, 40(9): 1385-1394. doi: S1872-2067(19)63334-6 shu

介孔碳作为非金属丙烷脱氢催化剂:孔道结构和表面性质的影响

  • 基金项目:

    国家自然科学基金(21421001,21573115);中央高校基本科研业务费专项资金(63185015);煤炭高效利用与绿色化工国家重点实验室基金(2017-K13).

摘要: 作为一种非金属催化剂,纳米碳材料被广泛应用于各种催化反应.尤其在近几年,纳米碳材料被发现是一种良好的烷烃脱氢催化剂.但是,由于缺乏对碳材料的结构和表面性质方面的基础研究,碳材料在烷烃直接脱氢反应中的活性位点并不明确.另外,由于碳材料本身的复杂结构,精确调控碳材料的微观孔道结构,研究碳材料的结构特性对其烷烃脱氢反应性能的影响仍存在较大难度.本文利用软模板和控制焙烧的方法合成出一系列具有不同孔道有序性和表面性质的介孔碳材料,系统研究了介孔碳孔道有序性和表面含氧官能团种类、含量等因素对介孔碳材料丙烷脱氢性能的影响.
XRD,SEM,TEM和氮气吸附结果显示,通过添加F127可将介孔孔道引入到碳材料中;调节间苯二酚和甲醛的比例可以实现介孔碳材料孔道有序性的调控;在保证碳材料孔道有序性的前提下,通过控制焙烧温度可以精确调节碳材料表面的含氧官能团种类和数量.然后,将该系列碳基催化剂进行丙烷脱氢测试.结果发现,介孔的引入可以为丙烷脱氢反应提供大量的活性位点,因而介孔碳比无孔碳具有更加优异的丙烷脱氢活性.对于介孔碳材料,孔道越有序,表面含氧官能团越多的介孔碳材料表现出更加优异的丙烷脱氢性能.因为高度有序的介孔孔道有利于反应物和反应产物的传质,降低催化反应的空间位阻,从而提高催化剂的活性,选择性和稳定性.碳材料表面的含氧官能团被认为是丙烷脱氢的主要活性位点,含氧官能团越多,活性位点越多,因而活性就越好.但是,介孔碳表面含有各种不同的含氧官能团(羧基、羟基和碳基).结合XPS和丙烷脱氢测试结果,将不同温度处理后的有序介孔碳的丙烯生成速率和表面含氧官能团含量进行拟合.结果表明,介孔碳材料表面的羰基含量与其丙烯生成速率之间具有非常好的线性关系,而羧基和羟基含量与丙烯生成速率之间并不具有明显的线性关系,从而证明碳材料表面的碳基可能为其在丙烷脱氢反应中的活性位点.本文从实验角度为纳米碳材料在烷烃脱氢方面的活性位点进行了初步证明.

English

    1. [1] D. S. Su, S. Perathoner, G. Centi, Chem. Rev., 2013, 113, 5782-5816.

    2. [2] M. M. Titirici, R. J. White, N. Brun, V. L. Budarin, D. S. Su, F. del Monte, J. H. Clark, M. J. MacLachlan, Chem. Soc. Rev., 2015, 44, 250-290.

    3. [3] W. Qi, P. Yan, D. S. Su, Acc. Chem. Res., 2018, 51, 640-648.

    4. [4] J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B. M. Weckhuysen, Chem. Rev., 2014, 114, 10613-10653.

    5. [5] L. Liu, Y. P. Zhu, M. Su, Z. Y. Yuan, ChemCatChem, 2015, 7, 2765-2787.

    6. [6] Z. Zhao, G. Ge, W. Li, X. Guo, G. Wang, Chin. J. Catal., 2016, 37, 644-670.

    7. [7] Y. P. Zhu, Y. Liu, Y. P. Liu, T. Z. Ren, T. Chen, Z. Y. Yuan, Chem-CatChem, 2015, 7, 2903-2909.

    8. [8] Q. Wang, Z. Zhang, M. Wang, J. Li, J. Fang, Y. Lai, Chin. J. Catal., 2018, 39, 1210-1218.

    9. [9] G. Wen, S. Wu, B. Li, C. Dai, D. S. Su, Angew. Chem. Int. Ed., 2015, 54, 4105-4109.

    10. [10] A. Sedrpoushan, M. Heidari, O. Akhavan, Chin. J. Catal., 2017, 38, 745-757.

    11. [11] L. Liu, S. D. Xu, F. Y. Wang, Y. J. Song, J. Liu, Z. M. Gao, Z. Y. Yuan, RSC Adv., 2017, 7, 12524-12533.

    12. [12] J. Zhang, X. Liu, R. Blume, A. Zhang, R. Schlögl, D. S. Su, Science, 2008, 322, 73-77.

    13. [13] C. Liang, H. Xie, V. Schwartz, J. Howe, S. Dai, S. H. Overbury, J. Am. Chem. Soc., 2009, 131, 7735-7741.

    14. [14] X. Liu, B. Frank, W. Zhang, T. P. Cotter, R. Schlögl, D. S. Su, Angew. Chem. Int. Ed., 2011, 50, 3318-3322.

    15. [15] J. Zhang, D. S. Su, R. Blume, R. Schlögl, R. Wang, X. Yang, A. Gajović, Angew. Chem. Int. Ed., 2010, 49, 8640-8644.

    16. [16] W. Qi, W. Liu, B. Zhang, X. Gu, X. Guo, D. Su, Angew. Chem. Int. Ed., 2013, 52, 14224-14228.

    17. [17] W. Qi, W. Liu, X. Guo, R. Schlögl, D. Su, Angew. Chem. Int. Ed., 2015, 54, 13682-13685.

    18. [18] Z. Zhao, Y. Dai, G. Ge, Catal. Sci. Technol., 2015, 5, 1548-1557.

    19. [19] Z. Zhao, Y. Dai, G. Ge, X. Guo, G. Wang, Green Chem., 2015, 17, 3723-3727.

    20. [20] Z. Zhao, Y. Dai, G. Ge, G. Wang, AIChE J., 2015, 61, 2543-2561.

    21. [21] Z. P. Hu, L. F. Zhang, Z. Wang, Z. Y. Yuan, J. Chem. Technol. Bio-technol., 2018, 93, 3410-3417.

    22. [22] Z. P. Hu, H. Zhao, C. Chen, Z. Y. Yuan, Catal. Today, 2018, 316, 214-222

    23. [23] P. Poudel, Q. Qiao, Nano Energy, 2014, 4, 157-175.

    24. [24] M. Chen, L. L. Shao, X. Qian, L. Liu, T. Z. Ren, Z. Y. Yuan, Chem. Eng. J., 2014, 256, 23-31.

    25. [25] L. L. Shao, M. Chen, Z. Y. Yuan, J. Power Sources, 2014, 272, 1091-1099.

    26. [26] C. Chen, H. Wang, C. Han, J. Deng, J. Wang, M. Li, M. Tang, H. Jin, Y. Wang, J. Am. Chem. Soc., 2017, 139, 2657-2663.

    27. [27] J. Deng, T. Xiong, F. Xu, M. Li, C. Han, Y. Gong, H. Wang, Y. Wang, Green Chem., 2015, 17, 4053-4060.

    28. [28] J. Goscianska, R. Pietrzak, J. Matos, Catal. Today, 2018, 301, 204-216.

    29. [29] J. Matos, J. Laine, Appl. Catal. A, 2003, 241, 25-38.

    30. [30] J. Zhang, D. Su, A. Zhang, D. Wang, R. Schlögl, C. Hébert, Angew. Chem. Int. Ed., 2007, 46, 7319-7323.

    31. [31] D. S. Su, J. J. Delgado, X. Liu, D. Wang, R. Schlögl, L. Wang, Z. Zhang, Z. Shan, F. S. Xiao, Chem. Asian J., 2009, 4, 1108-1113.

    32. [32] Y. Song, G. Liu, Z. Y. Yuan, RSC Adv., 2016, 6, 94636-94642.

    33. [33] L. Li, W. Zhu, Y. Liu, L. Shi, H. Liu, Y. Ni, S. Liu, H. Zhou, Z. Liu, RSC Adv., 2015, 5, 56304-56310.

    34. [34] T. Y. Ma, L. Liu, Z. Y. Yuan, Chem. Soc. Rev., 2013, 42, 3977-4003.

    35. [35] L. Liu, Q. F. Deng, B. Agula, X. Zhao, T. Z. Ren, Z. Y. Yuan, Chem. Commun., 2011, 47, 8334-8336.

    36. [36] L. Liu, Q. F. Deng, B. Agula, T. Z. Ren, Y. P. Liu, B. Zhaorigetu, Z. Y. Yuan, Catal. Today, 2012, 186, 35-41.

    37. [37] C. Liang, S. Dai, J. Am. Chem. Soc., 2006, 128, 5316-5317.

    38. [38] L. Liu, F. Y. Wang, G. S. Shao, Z. Y. Yuan, Carbon, 2010, 48, 2089-2099.

    39. [39] D. Liu, J. H. Lei, L. P. Guo, D. Qu, Y. Li, B. L. Su, Carbon, 2012, 50, 476-487.

    40. [40] M. Kruk, M. Jaroniec, Chem. Mater., 2001, 13, 3169-3183.

    41. [41] J. C. Groen, L. A. A. Peffer, J. Pérez-Ramírez, Microporous Meso-porous Mater., 2003, 60, 1-17.

    42. [42] J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, J. J. M. Orfao, Carbon, 1999, 37, 1379-1389.

    43. [43] J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, J. J. M. Órfão, Ind. Eng. Chem. Res., 2007, 46, 4110-4115.

    44. [44] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon, 2008, 46, 833-840.

    45. [45] S. Kundu, Y. Wang, W. Xia, M. Muhler, J. Phys. Chem. C, 2008, 112, 16869-16878.

    46. [46] G. Hotová, V. Slovák, O. S. G. P. Soares, J. L. Figueiredo, M. F. R. Pereira, Carbon, 2018, 134, 255-263.

    47. [47] G. Wen, J. Diao, S. Wu, W. Yang, R. Schlögl, D. S. Su, ACS Catal., 2015, 5, 3600-3608.

    48. [48] W. Qi, W. Liu, B. Zhang, X. Gu, X. Guo, D. Su, Angew. Chem. Int. Ed., 2013, 52, 14224-14228.

    49. [49] H. Li, Y. Sun, Z. Y. Yuan, Y. P. Zhu, T. Y. Ma, Angew. Chem. Int. Ed., 2018, 57, 3222-3227.

    50. [50] Y. Wang, H. Zhao, G. Zhao, Appl. Catal. B, 2015, 164, 396-406.

    51. [51] H. Ma, L. Zeng, H. Tian, D. Li, X. Wang, X. Li, J. Gong, Appl. Catal. B, 2016, 181, 321-331.

    52. [52] C. A. Grande, A. E. Rodrigues, Ind. Eng. Chem. Res., 2001, 40, 1686-1693.

    53. [53] N. Rahimi, R. Karimzadeh, Appl. Catal. A, 2011, 398, 1-17.

    54. [54] Z. P. Hu, C. Chen, J. T. Ren, Z. Y. Yuan, Appl. Catal. A, 2018, 559, 85-93.

  • 加载中
计量
  • PDF下载量:  7
  • 文章访问数:  1045
  • HTML全文浏览量:  154
文章相关
  • 收稿日期:  2019-01-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章