
Citation: Lichao Wang, Shuang Cao, Kai Guo, Zhijiao Wu, Zhi Ma, Lingyu Piao. Simultaneous hydrogen and peroxide production by photocatalytic water splitting[J]. Chinese Journal of Catalysis, 2019, 40(3): 470-475. doi: S1872-2067(19)63274-2

光催化分解水制备氢气和过氧化氢
在本项工作中,我们利用Pt/TiO2(锐钛矿)光催化剂在没有牺牲剂的条件下实现了高效产氢和过氧化氢,氢气和过氧化氢的生成速率分别达到7410和5096μmol g-1 h-1(第一小时),远高于市售的Pt/TiO2(锐钛矿)体系和文献报道数值.本文采用X射线光电子能谱(XPS)、电子自旋共振(ESR)和荧光标记法等表征手段研究了Pt/TiO2上同时生成氢气和过氧化氢的催化机理.
XPS测试结果表明,Pt/TiO2在光照射1h后,XPS信号发生明显变化.与其他样品相比,物理吸附水和羟基的峰明显增加.因此,我们推测羟基和物理吸附水对过氧化氢的生成具有重要影响.进一步采用电子自旋共振(ESR)和荧光标记法对羟基进行了测量.ESR结果显示,紫外光照60s即可检测到羟基捕获剂与羟基的结合物5,5-dimethyl-1-pyrroline-N-oxide-OH(DMPO-OH)的特征峰.此外,在体系中加入荧光标记分子对苯二甲酸(TANa)后也可以迅速检测到2-羟基对苯二甲酸(TAOH)在422nm处明显的荧光信号.因此,ESR和荧光结果均表明所产生的羟基自由基在过氧化氢形成中起着重要作用.
上述结果表明,在本体系中氢气和过氧化氢的生成遵循两电子转移过程.与传统全分解水体系生成氢气和氧气相比,两电子转移过程比四电子过程更容易发生.因此,光催化水氧化制过氧化氢是实现大规模生产氢气和过氧化氢的一种很有前景的方法.
English
Simultaneous hydrogen and peroxide production by photocatalytic water splitting
-
Key words:
- Photocatalytic water splitting
- / Hydrogen
- / Hydrogen peroxide
- / Anatase TiO2
-
-
[1] S. Fukuzumi, Y. M. Lee, W. Nam, Chem.-Eur. J., 2018, 24, 5016-5031.
-
[2] B. Puértolas, A. K. Hill, T. García, B. Solsona, L. Tor-rente-Murciano, Catal. Today, 2015, 248, 115-127.
-
[3] M. N. Young, M. J. Links, S. C. Popat, B. E. Rittmann, C. I. Torres, ChemSusChem, 2016, 9, 3345-3352.
-
[4] K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Nat. Commun., 2016, 7, 11470-11476.
-
[5] Y. Yamada, M. Yoneda, S. Fukuzumi, Energy Environ. Sci., 2015, 8, 1698-1701.
-
[6] R. Ciriminna, L. Albanese, F. Meneguzzo, M. Pagliaro, ChemSus-Chem, 2016, 9, 3374-3381.
-
[7] S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Čolić, R. Frydendal, J. Rossmeisl, I. Chorkendorff, I. E. L. Stephens, ACS Catal., 2018, 8, 4064-4081.
-
[8] M. C. Wu, K. C. Hsiao, Y. H. Chang, S. H. Chan, Appl. Surf. Sci., 2018, 430, 407-414.
-
[9] D. Ni, H. Shen, H. Li, Y. Ma, T. Zhai, Appl. Surf. Sci., 2017, 409, 241-249.
-
[10] F. Li, Q. Gu, Y. Niu, R. Wang, Y. Tong, S. Zhu, H. Zhang, Z. Zhang, X. Wang, Appl. Surf. Sci., 2017, 391, 251-258.
-
[11] Z. Jiang, M. A. Isaacs, Z. W. Huang, W. Shangguan, Y. Deng, A. F. Lee, ChemCatChem, 2017, 9, 4268-4274.
-
[12] P. Devaraji, W. K. Jo, ChemCatChem, 2018, 10, 3813-3823.
-
[13] W. Chen, Y. Wang, S. Liu, L. Gao, L. Mao, Z. Fan, W. Shangguan, Z. Jiang, Appl. Surf. Sci., 2018, 445, 527-534.
-
[14] F. Chen, W. Luo, Y. Mo, H. Yu, B. Cheng, Appl. Surf. Sci., 2018, 430, 448-456.
-
[15] S. Wei, S. Ni, X. Xu, Chin. J. Catal., 2018, 39, 510-516.
-
[16] J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, Y. Xu, Chin. J. Catal., 2015, 36, 2049-2070.
-
[17] L. Pan, J. Zhang, X. Jia, Y. H. Ma, X. Zhang, L. Wang, J. Zou, Chin. J. Catal., 2017, 38, 253-259.
-
[18] K. Qi, B. Cheng, J. Yu, W. Ho, Chin. J. Catal., 2017, 38, 1936-1955.
-
[19] C. Zhang, L. Tian, L. Chen, X. Li, K. Lv, K. Deng, Chin. J. Catal., 2018, 39, 1373-1383.
-
[20] F. Xu, L. Zhang, B. Cheng, J. Yu, ACS Sustainable Chem. Eng., 2018, 6, 12291-12298.
-
[21] A. Meng, J. Zhang, D. Xu, B. Cheng, J. Yu, Appl. Catal. B, 2016, 198, 286-294.
-
[22] J. Chen, T. Ding, J. Cai, Y. Wang, M. Wu, H. Zhang, W. Zhao, Y. Tian, X. Wang, X. Li, Appl. Surf. Sci., 2018, 453, 101-109.
-
[23] L. Kong, X. Zhang, C. Wang, F. Wan, L. Li, Chin. J. Catal., 2017, 38, 2120-2131.
-
[24] Q. F. Liu, Q. Zhang, B. R. Liu, S. Li, I. J. Ma, Chin. J. Catal., 2018, 39, 542-548.
-
[25] Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, ACS Sustainable Chem. Eng., 2017, 5, 6478-6485.
-
[26] Y. Kofuji, Y. Isobe, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, J. Am. Chem. Soc., 2016, 138, 10019-10025.
-
[27] A. Naldoni, T. Montini, F. Malara, M. M. Mróz, A. Beltram, T. Virgili, C. L. Boldrini, M. Marelli, I. Romero-Ocaña, J. J. Delgado, V. D. Santo, P. Fornasiero, ACS Catal., 2017, 7, 1270-1278.
-
[28] R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han, C. Li, En-ergy Environ. Sci., 2015, 8, 2377-2382.
-
[29] K. Maeda, Chem. Commun., 2013, 49, 8404-8406.
-
[30] V. M. Daskalaki, P. Panagiotopoulou, D. I. Kondarides, Chem. Eng. J., 2011, 170, 433-439.
-
[31] J. Liu, Y. Zhang, L. Lu, G. Wu, W. Chen, Chem. Commun., 2012, 48, 8826-8828.
-
[32] Z. Wu, S. Cao, C. Zhang, L. Piao, Nanotechnology, 2017, 28, 275706/1-275706/12.
-
[33] Z. Li, B. Tian, W. Zhen, Y. Wu, G. Lu, Appl. Catal. B, 2017, 203, 408-415.
-
[34] M. Liu, L. Piao, W. Lu, S. Ju, C. Zhou, H. Li, W. Wang, Nanoscale, 2010, 2, 1115-1117.
-
[35] M. Liu, M. Zhong, H. Li, L. Piao, W. Wang, ChemPlusChem, 2015, 80, 688-696.
-
[36] M. A. Khalily, H. Eren, S. Akbayrak, H. H. Susapto, N. Biyikli, S. Özkar, M. O. Guler, Angew. Chem. Int. Ed., 2016, 55, 12257-12261.
-
[37] D. Wang, Z. P. Liu, W. M. Yang, ACS Catal., 2017, 7, 2744-2752.
-
[38] J. Cai, M. Wu, Y. Wang, H. Zhang, M. Meng, Y. Tian, X. Li, J. Zhang, L. Zheng, J. Gong, Chem, 2017, 2, 877-892.
-
[39] T. D. Nguyen-Phan, S. Luo, Z. Liu, A. D. Gamalski, J. Tao, W. Xu, E. A. Stach, D. E. Polyansky, S. D. Senanayake, E. Fujita, J. A. Rodriguez, Chem. Mater., 2015, 27, 6281-6296.
-
[40] Z. Wei, D. Liu, W. Wei, X. Chen, Q. Han, W. Yao, X. Ma, Y. Zhu, ACS Appl. Mater. Interfaces, 2017, 9, 15533-15540.
-
[41] J. J. Wang, Z. J. Li, X. B. Li, X. B. Fan, Q. Y. Meng, S. Yu, C. B. Li, J. X. Li, C. H. Tung, L. Z. Wu, ChemSusChem, 2014, 7, 1468-1475.
-
[42] S. Cao, Y. Chen, H. Wang, J. Chen, X. Shi, H. Li, P. Cheng, X. Liu, M. Liu, L. Piao, Joule, 2018, 2, 549-557.
-
[43] T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C, 2007, 111, 5295-5275.
-
[44] X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev., 2016, 45, 2603-2636.
-
[45] K. Sayama, H. Arakawa, J. Chem. Soc., Faraday Trans., 1997, 93, 1647-1654.
-
-

计量
- PDF下载量: 59
- 文章访问数: 2433
- HTML全文浏览量: 512