
Citation: Jian Li, Jiangtao Fan, Sajjad Ali, Guojun Lan, Haodong Tang, Wenfeng Han, Huazhang Liu, Bo Li, Ying Li. The origin of the extraordinary stability of mercury catalysts on the carbon support: the synergy effects between oxygen groups and defects revealed from a combined experimental and DFT study[J]. Chinese Journal of Catalysis, 2019, 40(2): 141-146. doi: S1872-2067(19)63271-7

超稳低汞催化剂的稳定机理:炭表面含氧基团及缺陷协同作用实验及理论研究
活性炭具有较高的比表面积、可调控的表面化学性质和耐酸碱腐蚀性,在工业中应用广泛.氯乙烯单体合成的原料为氯化氢和乙炔,由于氯化氢的腐蚀性,活性炭基催化剂在工业化应用方面具有明显的优势.而活性炭载体的表面性质调控及对负载型金属催化剂的相互作用研究一直是近年来多相催化领域的一个热点.本文通过热处理的方法调控了活性炭的表面含氧基团,研究了活性炭的表面结构的区别,通过浸渍法制备了三种活性炭负载的低汞催化剂,对比了三种不同的活性炭载体的乙炔氢氯化性能及稳定性,发现表面基团的调控对低汞催化剂的稳定性具有较大的影响.热重实验表明,HgCl2/AC-C催化剂中氯化汞的最大失重温度提高到了380℃以上.该催化剂在反应温度140℃,乙炔空速30h-1条件下稳定运行10000h,乙炔转化率只下降了8%.DFT理论计算发现,碳氧双键旁边的缺陷位和氯化汞可以形成强的化学吸附,其吸附能可达120-130kJ/mol,而氯化汞在含氧基团的表面吸附能只有3-35kJ/mol.本文通过对活性炭表面结构的调控,使氯化汞和炭表面活性位形成化学吸附,可大大提高催化剂的耐热稳定性,从理论上给出了低汞催化剂的热稳定性解决方案,目前该催化剂已经成功实现了产业化应用,在工业转化器上使用寿命超过12000h,性能表现卓越.超稳低汞催化剂的工业化应用不仅能够降低氯乙烯单体生产过程中的单耗,节约PVC生产成本,还能够有效减少汞触媒使用过程中造成的重金属污染,为我国电石法氯碱行业的节能减排及限汞公约履约提供了很好的技术支撑和保障.
English
The origin of the extraordinary stability of mercury catalysts on the carbon support: the synergy effects between oxygen groups and defects revealed from a combined experimental and DFT study
-
Key words:
- Mercury catalysts
- / Thermal stability
- / Defects
- / Oxygen groups
- / Acetylene hydrochlorination
-
-
[1] H. Schobert, Chem. Rev., 2014, 114, 1743-1760.
-
[2] J. Liu, G. J. Lan, Y. Y. Qiu, X. L. Wang, Y. Li, Chin. J. Catal., 2018, 39, 1664-1671.
-
[3] T. Degnan, Focus on Catalysts, 2016, 3, 1-2.
-
[4] Y. Lin, S. X. Wang, Q. R. Wu, T. Larssen, Environ. Sci. Technol., 2016, 50, 2337-2344.
-
[5] P. Johnston, N. Carthey, G. J. Hutchings, J. Am. Chem. Soc., 2016, 137, 14548-14557.
-
[6] G. Malta, S. A. Kondrat, S. J. Freakley, C. J. Davies, L. Lu, S. Dawson, A. Thetford, E. K. Gibson, D. J. Morgan, W. Jones, P. P. Wells, P. Johnston, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, Science, 2017, 355, 1399-1403.
-
[7] X. Y. Li, X. L. Pan, L. Yu, P. J. Ren, X. Wu, L. T. Sun, F. Jiao, X. H. Bao, Nat. Commun., 2014, 5, 3688.
-
[8] G. J. Lan, Y. Wang, Y. Y. Qiu, X. L. Wang, J. Liang, W. F. Han, H. D. Tang, H. Z. Liu, J. Liu, Y. Li, Chem. Commun., 2018, 54, 623-626.
-
[9] Y. Yang, G. J. Lan, X. L. Wang, Y. Li, Chin. J. Catal., 2016, 37, 1242-1248.
-
[10] C. Liu, C. H. Liu, J. H. Peng, L. B. Zhang, S. X. Wang, A. Y. Ma, Chin. J. Chem. Eng., 2018, 26, 364-372.
-
[11] Y. C. Xie, Y. Q. Tang, Adv. Catal., 1990, 37, 1-43.
-
[12] G. J. Hutchings, D. T. Grady, Appl. Catal., 1985, 16, 411-415.
-
[13] G. J. Hutchings, J. Catal., 1985, 96, 292-295.
-
[14] X. L. Xu, J. Zhao, C. S. Lu, T. T. Zhang, X. X. Di, S. C. Gu, X. N. Li, Chin. Chem. Lett., 2016, 27, 822-826.
-
[15] X. B. Wei, H. B. Shi, W. Z. Qian, G. H. Luo, Y. Jin, F. Wei, Ind. Eng. Chem. Res., 2009, 48, 128-133.
-
[16] L. L. Xu, X. G. Wang, H. Y. Zhang, B. Dai, Z. Y. Liu, Q. F. Zhang, Chem. Ind. End. Prog., 2011, 30, 536-541.
-
[17] Y. Li, G. J. Lan, G. Q. Feng, J. Wei, W. F. Han, H. D. Tang, H. Z. Liu, ChemCatChem, 2014, 6, 572-579.
-
[18] X. M. Wang, N. Li, J. A. Webb, L. D. Pfefferle, G. L. Haller, Appl. Catal. B, 2010, 101, 21-30.
-
[19] J. H. Xu, J. Zhao, J. Xu, T. T. Zhang, X. N. Li, X. X. Di, J. Ni, J. G. Wang, C. Jie, Ind. Eng. Chem. Res., 2014, 53, 14272-14281.
-
[20] M. R. Axet, O. Dechy-Cabaret, J. Durand, M. Gouygou, P. Serp, Coord. Chem. Rev., 2016, 308, 236-345.
-
[21] H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao, C. L. Wang, J. J. Li, S. Q. Wei, J. L. Lu, J. Am. Chem. Soc., 2015, 137, 10484-10487.
-
[22] W. Y. Chen, J. Ji, S. Z. Duan, G. Qian, P. Li, X. G. Zhou, D, Chen, W. K. Yuan, Chem. Commun., 2014, 50, 2142-2144.
-
[23] W. Y. Chen, X. Z. Duan, G. Qian, D. Chen, X. G. Zhou, ChemSusChem, 2015, 8, 2927-2931.
-
[24] P. Behra, P. Bonnissel-Gissinger, M. Alnot, R. Revel, J. J. Ehrhardt, Langmuir, 2001, 17, 3970-3979.
-
[25] R. S. Vieira, M. L. M. Oliveira, E. Guibal, E. Rodríguez-Castellón, M. M. Beppu, Colloids Surf. A, 2011, 374, 108-114.
-
[26] Y. V. Fedoseeva, A. S. Orekhov, G. N. Chekhova, V. O. Koroteev, M. A. Kanygin, B. V. Senkovskiy, A. Chuvilin, D. Pontiroli, M. Ricco, L. G. Bulusheva, A. V. Okotrub, ACS Nano, 2017, 11, 8643-8649.
-
[27] E. Sasmaz, A. Kirchofer, A. D. Jew, A. Saha, D. Abram, T. F. Jaramillo, J. Wilcox, Fuel, 2012, 99, 188-196.
-
[28] X. Y. Sun, B. Li, D. S. Su, Chem. Asian J., 2016, 11, 1668-1671.
-
[29] W. Ren, L. Duan, Z. W. Zhu, W. Du, Z. Y. An, L. J. Xu, C. Zhang, Y. Q. Zhuo, C. H. Chen, Environ. Sci. Technol., 2014, 48, 2321-2327.
-
[30] M. Y. Zhu, Q. Q. Wang, K. Chen, Y. Wang, C. F. Huang, H. Dai, F. Yu, L. H. kang, B. Dai, ACS Catal., 2015, 5, 5306-5316.
-
-

计量
- PDF下载量: 9
- 文章访问数: 1098
- HTML全文浏览量: 155