含苯并三氮唑单元的新型吡唑肟衍生物的合成与生物活性

朱玥 郑丹丹 缪何一 钱程 戴红 梁凯 周贝贝 石玉军 荀校 王阳

引用本文: 朱玥, 郑丹丹, 缪何一, 钱程, 戴红, 梁凯, 周贝贝, 石玉军, 荀校, 王阳. 含苯并三氮唑单元的新型吡唑肟衍生物的合成与生物活性[J]. 有机化学, 2020, 40(12): 4315-4321. doi: 10.6023/cjoc202008031 shu
Citation:  Zhu Yue, Zheng Dandan, Miao Heyi, Qian Cheng, Dai Hong, Liang Kai, Zhou Beibei, Shi Yujun, Xun Xiao, Wang Yang. Synthesis and Biological Activities of Novel Pyrazole Oxime Derivatives Containing Benzotriazolyl Moiety[J]. Chinese Journal of Organic Chemistry, 2020, 40(12): 4315-4321. doi: 10.6023/cjoc202008031 shu

含苯并三氮唑单元的新型吡唑肟衍生物的合成与生物活性

    通讯作者: 戴红, daihong_2015@aliyun.com; 王阳, wangyang1617@sina.com
  • 基金项目:

    国家自然科学基金(Nos.21372135,21802075)、南通市科技计划(No.MS12019060)资助项目

摘要: 为了探寻新型含氮杂环活性物质,以杀螨剂唑螨酯为先导化合物,在吡唑肟的分子结构中引入苯并三氮唑单元结构,设计合成了17个未见文献报道的含苯并三氮唑结构的新型吡唑肟类衍生物.目标化合物的结构经1H NMR,13C NMR和元素分析确证.初步的生测数据表明,部分目标化合物显示出优良杀虫作用.在20 μg/mL浓度下,3个化合物对朱砂叶螨有70%~100%的防效.6个化合物在20 μg/mL浓度下对蚜虫的杀死率在90%~100%.另外,16个化合物在500 μg/mL浓度下对粘虫也呈现出较好的杀虫活性(致死率≥ 80%).

English

  • 目前, 含氮杂环单元因其具有多样的生物活性而成为新药创制研究的热点领域[1-10].苯并三氮唑为一种常见的含氮杂环结构, 多用于杀菌、除草、抗病毒、抗癌等生物活性分子研究中, 在植物保护和医疗保健等方面有着广阔的应用[11-16].如Zhu课题组[17]报道的化合物A呈现出良好的杀菌效果, 化合物A在50 μg/mL测试浓度下对苹果轮纹病菌的防效达56.8%, He等[18]研发的化合物B具有除草与酮醇酸还原异构酶抑制活性.吡唑肟衍生物也是氮杂环中的一员, 展现出优异杀菌、杀虫及抗癌等活性, 在农药与医药方面起到重要作用[19-22].如日本Nihon Nohyaku公司报道的杀螨剂唑螨酯(Fenpy- roximate)对螨虫等害虫有显著的防治效果, 唑螨酯由于具有持效期较长、受季节影响小等特点[23]引起药物化学家的广泛关注.近年来, 不少具有良好生物活性的吡唑肟衍生物被成功研制出来, 如Zou课题组[24]开发的含吡啶基吡唑肟衍生物C对螨虫和蚜虫表现出良好的杀虫效果, 化合物C在100 μg/mL测试浓度下对螨虫和蚜虫的杀死率分别为100%和90%;同时, 本课题组研究发现含噁唑联苯基单元的吡唑肟D[25]和含1, 3, 4-噁二唑联苯基结构的吡唑肟E[26]呈现出较好的杀虫作用, 化合物D在500 μg/mL测试浓度下对粘虫、螨虫和蚜虫的杀死率分别为100%, 90%和100%, 化合物E在500 μg/mL测试浓度下对粘虫与蚜虫的防效分别为100%和80%.因此, 为了继续从吡唑肟类化合物中寻找出具有优良生物活性的物质, 本工作在杀螨剂唑螨酯与前期研究基础上, 运用活性片段杂合策略, 对唑螨酯中吡唑环4-位取代苯基部分进行改造, 将叔丁基酯基片段用苯并三氮唑杂环替代, 同时将唑螨酯中吡唑环5-位的苯基用取代苯环替代, 设计制备出了一系列含苯并三氮唑单元的新型吡唑肟化合物, 并测定了所合成的化合物对朱砂叶螨、粘虫和蚜虫的生物活性.详细的合成路线见Scheme 1.

    图式 1

    图式 1.  目标化合物7a~7q的合成路线
    Scheme 1.  Synthetic route of the target compounds 7a~7q

    图 1

    图 1.  化合物A~E和唑螨酯的结构
    Figure 1.  Structures of compounds A~E and fenpyroximate

    图 2

    图 2.  目标化合物7a~7q的分子设计图
    Figure 2.  Design strategy of the title compounds 7a~7q

    在制备目标产物7时, 以7g为例, 尝试了不同的缚酸剂如三乙胺、碳酸钠、碳酸钾、氢氧化钾, 不同的溶剂如三氯甲烷、乙腈、N, N-二甲基甲酰胺(DMF)对7g单步收率的影响(表 1).实验过程中发现, 选以碳酸钾为缚酸剂, 以乙腈为溶剂, 加热回流反应10 h, 反应转化率较高, 7g的单步收率为70%.因此, 最后通过以碳酸钾为缚酸剂, 乙腈为溶剂, 加热回流的方法顺利地制备出了其它含苯并三氮唑结构的吡唑肟衍生物.

    表 1

    表 1  反应条件对化合物7g收率的影响
    Table 1.  Effects of reaction conditions on the synthesis of compound 7g
    下载: 导出CSV
    Entry Base Solvent Reaction condition Yield/%
    1 Et3N CHCl3 Reflux for 10 h 0
    2 Na2CO3 CHCl3 Reflux for 10 h 0
    3 K2CO3 CHCl3 Reflux for 10 h 0
    4 Et3N CH3CN Reflux for 10 h 0
    5 Na2CO3 CH3CN Reflux for 10 h 0
    6 K2CO3 CH3CN Reflux for 10 h 70
    7 KOH CH3CN Reflux for 10 h 32
    8 Et3N DMF 80 ℃ for 10 h 0
    9 Na2CO3 DMF 80 ℃ for 10 h 0
    10 K2CO3 DMF 80 ℃ for 10 h 55
    11 KOH DMF 80 ℃ for 10 h 0

    以目标产物7e为例, 对7e1H NMR和13C NMR数据进行剖析.由7e的核磁氢谱可看出, δ 8.16出现的双重峰归属于苯并三氮唑苯环上的1个氢; δ 7.87出现的单峰归属于CH=N键上的1个氢; δ 7.73~7.76出现的多重峰归属于苯并三氮唑苯环上的1个氢及与苯并三氮唑相连的苯环上的2个氢; δ 7.56~7.58出现的多重峰归属于苯并三氮唑苯环上的1个氢; δ 7.51出现的双重峰归属于与苯并三氮唑相连的苯环上的另外2个氢; δ 7.43~7.47出现的多重峰归属于苯并三氮唑苯环上的另外1个氢; δ 6.81~7.24出现的多重峰归属于3-Br取代苯环上的4个氢; δ 5.08出现的单峰归属于与氧原子相连的CH2上的2个氢; δ 3.62出现的单峰归属于取代吡唑环1-位CH3上的3个氢; δ 2.38出现的单峰归属于取代吡唑环3-位CH3上的3个氢.从7e的核磁碳谱可知, OCH2的C原子出现在δ 75.24, 取代吡唑环1-位CH3和3-位CH3的C原子分别出现在δ 34.30和14.47.

    采用喷雾法[27]测定目标化合物7a~7q的杀朱砂叶螨(Tetranychus cinnabarinus)及杀蚜虫(Aphis medicaginis)活性, 利用浸叶法[28]测定目标化合物7a~7q的杀粘虫(Mythimna separata)活性.通过表 2可以看出, 部分目标化合物对所测试的三种昆虫呈现出良好的杀虫效果.在500 μg/mL测试浓度下, 7a7b7d7f7g7i7j7l对朱砂叶螨有100%的致死率, 与唑螨酯相当; 一些化合物在100 μg/mL浓度下对朱砂叶螨有明显的杀虫效果, 其中7a7b7f7i7j对朱砂叶螨的杀死率为90%~100%, 与唑螨酯相接近; 测试浓度降到20 μg/mL时, 化合物7a7b7f7i7j对朱砂叶螨仍表现出60%~100%的杀灭效果, 其中7a7j与唑螨酯的杀虫活性相当.通过构效关系分析能看出, 当R1=CH3时, R2为3-F (7a)、4-F (7b)、4-Br (7f)、4-OCH3 (7i)、4-OCF3 (7j)的化合物对朱砂叶螨的防效要高于其它化合物的杀虫活性.同时, 多数目标化合物在500 μg/mL浓度下对蚜虫有着较高的杀虫活性, 其中7a~7g7i~7l对蚜虫的杀死率为100%, 与对照药吡虫啉相当; 化合物7a~7d7f~7g7i~7l在100 μg/mL浓度下对蚜虫还有100%的杀虫作用; 降低测试浓度至20 μg/mL, 一些目标化合物对蚜虫仍表现出较好的杀灭作用, 化合物7a7b7d7f7g7i~7l对蚜虫的致死率为70%~100%.从构效关系分析发现, 当R1=CH3时, R2为3-F (7a)、4-F (7b)、4-Br (7f)、4-OCH3 (7i)、4-OCF3 (7j)、4-CH3 (7l)的化合物对蚜虫的杀虫活性较高, 要好于其它目标化合物对蚜虫的防效.在4 μg/mL浓度下, 化合物7a7f7i7k对蚜虫仍有20%~30%的杀死率.此外, 在500 μg/mL浓度下, 多数化合物对粘虫也有较高的防治作用, 其中化合物7a~7o对粘虫的致死率都达100%, 与对照药啶虫丙醚相当.通过构效关系分析可知, R1=CH3时化合物7a~7o对粘虫的杀虫活性要高于R1=4-CH3C6H4时化合物7p7q的防效.从整体的构效关系也能看出, 化合物7a (R1=CH3, R2=3-F)、7f (R1=CH3, R2=4-Br)和7j (R1=CH3, R2=4-OCF3)对所测试的朱砂叶螨、蚜虫和粘虫的杀虫效果相对突出, 可作进一步的结构衍生与活性研究.

    表 2

    表 2  目标化合物7a~7q的杀虫活性(死亡率/%)a
    Table 2.  Insecticidal activities of the title compounds 7a~7q (mortality/%)
    下载: 导出CSV
    Compd. Tetranychus cinnabarinus Aphis medicaginis Mythimna separata
    500 μg/mL 100 μg/mL 20 μg/mL 4 μg/mL 500 μg/mL 100 μg/mL 20 μg/mL 4 μg/mL 500 μg/mL 100 μg/mL
    7a 100 100 90 0 100 100 100 30 100 0
    7b 100 100 60 0 100 100 90 0 100 0
    7c 0 100 100 50 0 100 0
    7d 100 0 100 100 70 0 100 0
    7e 0 100 70 20 0 100 0
    7f 100 100 70 0 100 100 100 30 100 0
    7g 100 0 100 100 70 0 100 0
    7h 0 0 100 0
    7i 100 90 60 0 100 100 100 20 100 0
    7j 100 100 100 0 100 100 90 0 100 0
    7k 0 100 100 80 30 100 0
    7l 100 70 0 100 100 90 0 100 0
    7m 0 0 100 0
    7n 0 0 100 0
    7o 0 60 0 100 0
    7p 0 0 80 0
    7q 0 0 0
    Fenpyroximate 100 100 100
    Imidacloprid 100 100 100 100
    Pyridalyl 100 100
    a — refers to “not tested”.

    通过活性单元拼接方法, 合成出17个具有苯并三氮唑单元的吡唑肟衍生物.通过核磁共振氢谱、核磁碳谱及元素分析对目标化合物的结构进行了确认.初步杀虫活性测试数据显示, 在500 μg/mL测试浓度下, 目标化合物7a7b7d7f7g7i7j7l对朱砂叶螨的杀死率均达100%, 测试浓度降至100 μg/mL时, 目标化合物7a7b7f7i7j对朱砂叶螨表现出90%~100%的杀虫作用, 7a7f7j在20 μg/mL浓度下对朱砂叶螨仍有较高的杀灭效果, 杀死率分别90%, 70%和100%;化合物7a~7d7f~7g7i~7l在500和100 μg/mL浓度下对蚜虫有优异的防效, 致死率均为100%, 降低测试浓度至20 μg/mL时, 化合物7a7b7f7i7j7l对蚜虫仍有90%以上的杀虫活性.此外, 化合物7a~7p在500 μg/mL浓度下对粘虫具有80%~100%的防效.这为今后继续进行新型吡唑肟分子合成和杀虫活性研究提供了重要的参考信息.

    通过BRUKER 400 MHz核磁共振仪(TMS为内标)测定化合物的核磁氢谱和碳谱; 通过X-4显微熔点测定仪(温度计未经校正)测定化合物的熔点; 通过Yanaco- CHN CORDER MT-3自动元素分析仪测试化合物的元素分析.所用的试剂都为分析纯.化合物1[29]4~6[30]参照文献合成.

    将0.02 mol化合物1、80 mL四氢呋喃加入250 mL反应瓶中, 冰浴条件下向其中分批加入0.06 mol氢化铝锂, 加好后, 冰浴搅拌2 h.反应结束后, 向混合液中加入30 mL水, 过滤, 用50 mL二氯甲烷洗涤固体, 母液静置分层, 水相用二氯甲烷萃取(30 mL×3), 合并后的有机相通过无水硫酸钠干燥、脱溶得到化合物2, 不经纯化可直接投于下步反应.

    将0.01 mol化合物2、50 mL二氯甲烷加入100 mL反应瓶中, 冰浴条件下向其中缓慢滴加0.02 mol二氯亚砜, 加好后, 室温搅拌3 h.反应结束后, 向混合液中加入30 mL水, 用饱和碳酸氢钠溶液调节pH至7, 静置分层, 有机相经无水硫酸钠干燥、脱溶得到粗品, 通过柱层析[V(乙酸乙酯):V(石油醚)=1:20]分离得白色固体, 产率77%. m.p. 112~113 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.16 (d, J=8.00 Hz, 1H), 7.81 (d, J=8.40 Hz, 2H), 7.76 (d, J=8.40 Hz, 1H), 7.65 (d, J=8.40 Hz, 2H), 7.55~7.59 (m, 1H), 7.43~7.47 (m, 1H), 4.69 (s, 2H). Anal. calcd for C13H10ClN3: C 64.07, H 4.14, N 17.24; found C 64.25, H 4.30, N 17.12.

    将1 mmol化合物6、1.2 mmol化合物3及30 mL乙腈加到50 mL反应瓶中, 室温搅拌下向其中加入2 mmol碳酸钾.加好后, 将反应液升温回流反应8~16 h.停止反应, 冷却至室温, 抽滤, 用20 mL乙腈洗涤固体, 接下来浓缩母液所得粗品通过柱层析[V(乙酸乙酯):V(石油醚)=1:15]分离得到目标产物7a~7q.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(3-氟苯氧基)-3-甲基-1-甲基-1H-吡唑-4-甲酰基肟(7a):白色固体, 产率61%. m.p. 98~100 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.16 (d, J=8.40 Hz, 1H), 7.87 (s, 1H), 7.73~7.75 (m, 3H), 7.54~7.58 (m, 1H), 7.52 (d, J=8.40 Hz, 2H), 7.43~7.47 (m, 1H), 7.23~7.27 (m, 1H), 6.78~6.83 (m, 1H), 6.62~6.69 (m, 2H), 5.09 (s, 2H), 3.61 (s, 3H), 2.38 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 163.51 (d, J=246.50 Hz), 157.69, 157.58, 147.06, 146.53, 140.81, 138.48, 136.46, 132.29, 130.96, 129.79, 128.28, 124.43, 122.71, 120.38, 110.94, 110.49 (d, J=24.00 Hz), 103.54 (d, J=25.80 Hz), 100.30, 75.23, 34.28, 14.54. Anal. calcd for C25H21FN6O2: C 65.78, H 4.64, N 18.41; found C 65.95, H 4.51, N 18.61.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(4-氟苯氧基)-3-甲基-1-甲基-1H-吡唑-4-甲酰基肟(7b):无色油状物, 产率66%. 1H NMR (CDCl3, 400 MHz) δ: 8.16 (d, J=8.40 Hz, 1H), 7.85 (s, 1H), 7.75 (d, J=8.40 Hz, 3H), 7.43~7.58 (m, 4H), 6.98~7.02 (m, 2H), 6.84~6.88 (m, 2H), 5.09 (s, 2H), 3.61 (s, 3H), 2.37 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 158.77 (d, J=241.10 Hz), 152.63, 147.76, 147.02, 146.54, 140.91, 138.47, 136.49, 132.28, 129.81, 129.37, 128.29, 124.43, 122.70, 120.38, 116.53 (d, J=23.50 Hz), 110.35, 99.99, 75.22, 34.25, 14.63. Anal. calcd for C25H21FN6O2: C 65.78, H 4.64, N 18.41; found C 65.62, H 4.49, N 18.53.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(3-氯苯氧基)-3-甲基-1-甲基-1H-吡唑-4-甲酰基肟(7c):白色固体, 产率65%. m.p. 137~139 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.16 (d, J=8.40 Hz, 1H), 7.87 (s, 1H), 7.73~7.76 (m, 3H), 7.54~7.58 (m, 1H), 7.51 (d, J=8.40 Hz, 2H), 7.43~7.47 (m, 1H), 6.77~7.25 (m, 4H), 5.08 (s, 2H), 3.61 (s, 3H), 2.37 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 157.15, 147.12, 146.83, 146.52, 140.78, 138.48, 136.44, 135.44, 132.28, 130.79, 129.78, 128.29, 124.44, 123.97, 122.70, 120.36, 115.93, 113.56, 110.38, 100.27, 75.23, 34.29, 14.49. Anal. calcd for C25H21ClN6O2: C 63.49, H 4.48, N 17.77; found C 63.30, H 4.65, N 17.90.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(4-氯苯氧基)-3-甲基-1-甲基-1H-吡唑-4-甲酰基肟(7d):白色固体, 产率68%. m.p. 101~103 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.15 (d, J=8.00 Hz, 1H), 7.85 (s, 1H), 7.75 (d, J=8.00 Hz, 3H), 7.43~7.58 (m, 4H), 7.25~7.28 (m, 2H), 6.84 (d, J=8.80 Hz, 2H), 5.08 (s, 2H), 3.62 (s, 3H), 2.37 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 155.22, 147.19, 147.07, 146.54, 140.80, 138.44, 136.49, 132.28, 129.94, 129.82, 128.77, 128.29, 124.43, 122.69, 120.38, 116.63, 110.37, 100.15, 75.25, 34.26, 14.52. Anal. calcd for C25H21ClN6O2: C 63.49, H 4.48, N 17.77; found C 63.65, H 4.59, N 17.62.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(3-溴苯氧基)-3-甲基-1-甲基-1H-吡唑-4-甲酰基肟(7e):黄色固体, 产率63%. m.p. 143~145 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.16 (d, J=8.40 Hz, 1H), 7.87 (s, 1H), 7.73~7.76 (m, 3H), 7.56~7.58 (m, 1H), 7.51 (d, J=8.40 Hz, 2H), 7.43~7.47 (m, 1H), 6.81~7.24 (m, 4H), 5.08 (s, 2H), 3.62 (s, 3H), 2.38 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 157.16, 147.13, 146.79, 146.53, 140.77, 138.49, 136.45, 132.29, 131.09, 129.78, 128.28, 126.88, 124.43, 123.17, 122.71, 120.37, 118.79, 114.03, 110.39, 100.26, 75.24, 34.30, 14.47. Anal. calcd for C25H21BrN6O2: C 58.04, H 4.09, N 16.24; found C 58.24, H 4.01, N 16.06.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(4-溴苯氧基)-3-甲基-1-甲基-1H-吡唑-4-甲酰基肟(7f):黄色固体, 产率67%. m.p. 85~87 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.16 (d, J=8.00 Hz, 1H), 7.85 (s, 1H), 7.75 (d, J=8.00 Hz, 3H), 7.49~7.58 (m, 3H), 7.40~7.47 (m, 3H), 6.78 (d, J=8.80 Hz, 2H), 5.08 (s, 2H), 3.61 (s, 3H), 2.37 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 154.70, 146.02, 145.49, 139.70, 137.38, 135.44, 131.85, 131.23, 128.77, 128.34, 127.24, 123.38, 121.65, 119.33, 116.03, 115.12, 109.33, 99.14, 74.21, 33.21, 13.43. Anal. calcd for C25H21BrN6O2: C 58.04, H 4.09, N 16.24; found C 57.87, H 4.23, N 16.43.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-苯氧基-3-甲基-1-甲基-1H-吡唑-4-甲酰基肟(7g):白色固体, 产率70%. m.p. 89~91 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.15 (d, J=8.40 Hz, 1H), 7.86 (s, 1H), 7.72~7.75 (m, 3H), 7.51~7.58 (m, 3H), 7.43~7.46 (m, 1H), 7.30~7.34 (m, 2H), 7.08~7.12 (m, 1H), 6.90 (d, J=8.00 Hz, 2H), 5.10 (s, 2H), 3.61 (s, 3H), 2.38 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 156.72, 147.76, 146.93, 146.53, 141.16, 138.54, 136.43, 132.29, 130.03, 129.88, 128.27, 124.42, 123.71, 122.71, 120.37, 115.29, 110.37, 100.18, 75.20, 34.26, 14.77. Anal. calcd for C25H22N6O2: C 68.48, H 5.06, N 19.17; found C 68.36, H 5.19, N 19.01.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(2-甲氧基苯氧基)-3-甲基-1-甲基-1H-吡唑-4-甲酰基肟(7h):黄色固体, 产率65%. m.p. 73~75 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.15 (d, J=8.00 Hz, 1H), 7.83 (s, 1H), 7.73 (d, J=8.40 Hz, 3H), 7.42~7.57 (m, 4H), 6.68~7.10 (m, 4H), 5.10 (s, 2H), 3.91 (s, 3H), 3.63 (s, 3H), 2.37 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 148.97, 148.47, 146.80, 146.52, 145.76, 141.27, 138.66, 136.40, 132.30, 129.79, 128.27, 124.61, 124.42, 122.72, 120.96, 120.36, 115.80, 112.77, 110.37, 99.58, 75.11, 56.09, 34.22, 14.91. Anal. calcd for C26H24N6O3: C 66.65, H 5.16, N 17.94; found C 66.48, H 5.01, N 18.12.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(4-甲氧基苯氧基)-3-甲基-1-甲基-1H-吡唑-4-甲酰基肟(7i):黄色固体, 产率73%. m.p. 95~97 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.15 (d, J=8.40 Hz, 1H), 7.84 (s, 1H), 7.73~7.76 (m, 3H), 7.43~7.58 (m, 4H), 6.83 (s, 4H), 5.11 (s, 2H), 3.75 (s, 3H), 3.61 (s, 3H), 2.37 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 155.78, 150.62, 148.46, 146.84, 146.51, 141.23, 138.55, 136.42, 132.25, 129.84, 128.25, 124.40, 122.65, 120.33, 116.33, 114.92, 110.36, 99.79, 75.16, 55.67, 34.19, 14.78. Anal. calcd for C26H24N6O3: C 66.65, H 5.16, N 17.94; found C 66.80, H 5.06, N 17.80.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(4-三氟甲氧基苯氧基)-3-甲基-1-甲基-1H-吡唑-4-甲酰基肟(7j):无色油状物, 产率71%. 1H NMR (CDCl3, 400 MHz) δ: 8.16 (d, J=8.40 Hz, 1H), 7.86 (s, 1H), 7.73~7.76 (m, 3H), 7.43~7.58 (m, 4H), 7.18 (d, J=8.80 Hz, 2H), 6.91 (d, J=8.80 Hz, 2H), 5.07 (s, 2H), 3.62 (s, 3H), 2.37 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 154.91, 147.15, 147.08, 146.53, 144.78, 140.68, 138.35, 136.51, 132.25, 129.79, 128.28, 124.42, 122.87, 121.68 (q, J=255.50 Hz), 116.37, 116.16, 110.32, 100.17, 75.24, 34.27, 14.49. Anal. calcd for C26H21F3N6O3: C 59.77, H 4.05, N 16.08; found C 59.91, H 4.25, N 16.01.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(3-甲基苯氧基)-3-甲基-1-甲基-1H-吡唑-4-甲酰基肟(7k):白色固体, 产率69%. m.p. 103~105 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.15 (d, J=8.40 Hz, 1H), 7.86 (s, 1H), 7.73 (d, J=8.40 Hz, 3H), 7.43~7.58 (m, 4H), 6.67~7.21 (m, 4H), 5.12 (s, 2H), 3.60 (s, 3H), 2.39 (s, 3H), 2.31 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 156.73, 147.94, 146.83, 146.50, 141.22, 140.37, 138.52, 136.42, 132.26, 129.86, 129.71, 128.24, 124.51, 124.39, 122.67, 120.34, 115.83, 112.24, 110.34, 100.18, 75.18, 34.23, 21.43, 14.83. Anal. calcd for C26H24N6O2: C 69.01, H 5.35, N 18.57; found C 68.82, H 5.52, N 18.43.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(4-甲基苯氧基)-3-甲基-1-甲基-1H-吡唑-4-甲酰基肟(7l):白色固体, 产率75%. m.p. 91~93 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.15 (d, J=8.00 Hz, 1H), 7.85 (s, 1H), 7.72~7.75 (m, 3H), 7.53~7.58 (m, 3H), 7.42~7.46 (m, 1H), 7.10 (d, J=8.40 Hz, 2H), 6.79 (d, J=8.80 Hz, 2H), 5.11 (s, 2H), 3.60 (s, 3H), 2.38 (s, 3H), 2.29 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 154.70, 148.16, 146.85, 146.53, 141.26, 138.57, 136.44, 133.24, 132.29, 130.47, 129.89, 128.27, 124.42, 122.69, 120.38, 115.11, 110.36, 100.09, 75.19, 34.23, 20.58, 14.84. Anal. calcd for C26H24N6O2: C 69.01, H 5.35, N 18.57; found C 69.18, H 5.20, N 18.50.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(4-叔丁基苯氧基)-3-甲基-1-甲基-1H-吡唑-4-甲酰基肟(7m):无色油状物, 产率68%. 1H NMR (CDCl3, 400 MHz) δ: 8.15 (d, J=8.40 Hz, 1H), 7.86 (s, 1H), 7.73~7.76 (m, 3H), 7.42~7.57 (m, 4H), 7.32 (d, J=8.80 Hz, 2H), 6.82 (d, J=8.80 Hz, 2H), 5.11 (s, 2H), 3.61 (s, 3H), 2.40 (s, 3H), 1.29 (s, 9H); 13C NMR (CDCl3, 100 MHz) δ: 154.53, 148.22, 146.79, 146.62, 146.50, 141.27, 138.49, 136.45, 132.27, 129.89, 129.38, 128.25, 126.79, 124.39, 122.71, 120.34, 114.72, 110.33, 100.10, 75.19, 34.29, 34.23, 31.41, 14.92. Anal. calcd for C29H30N6O2: C 70.42, H 6.11, N 16.99; found C 70.26, H 6.30, N 16.86.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(2, 3-二氟苯氧基)-3-甲基-1-甲基-1H-吡唑-4-甲酰基肟(7n):白色固体, 产率63%. m.p. 109~111 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.16 (d, J=8.00 Hz, 1H), 7.87 (s, 1H), 7.73~7.76 (m, 3H), 7.54~7.58 (m, 1H), 7.51 (d, J=8.40 Hz, 2H), 7.43~7.47 (m, 1H), 6.89~6.94 (m, 2H), 6.50~6.54 (m, 1H), 5.06 (s, 2H), 3.67 (s, 3H), 2.35 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 151.56 (d, J=247.70 Hz), 147.10, 146.66, 146.51, 145.66, 142.43, 140.43, 139.94, 138.48, 136.41, 132.28, 129.59, 128.28, 124.42, 123.48, 122.70, 120.35, 112.25 (d, J=17.30 Hz), 111.47, 110.34, 99.92, 75.17, 34.26, 14.19. Anal. calcd for C25H20F2N6O2: C 63.29, H 4.25, N 17.71; found C 63.15, H 4.09, N 17.82.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(2, 4-二氯苯氧基)-3-甲基-1-甲基-1H-吡唑-4-甲酰基肟(7o):白色固体, 产率66%. m.p. 121~123 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.16 (d, J=8.40 Hz, 1H), 7.85 (s, 1H), 7.74~7.76 (m, 3H), 7.56~7.58 (m, 1H), 7.49 (d, J=8.40 Hz, 2H), 7.43~7.47 (m, 2H), 7.09~7.12 (m, 1H), 6.61 (d, J=8.80 Hz, 1H), 5.06 (s, 2H), 3.65 (s, 3H), 2.35 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 150.87, 147.17, 146.56, 146.52, 140.37, 138.40, 136.46, 132.25, 130.55, 129.68, 129.07, 128.26, 127.90, 124.40, 123.60, 122.65, 120.36, 116.23, 110.35, 100.02, 75.22, 34.26, 14.18. Anal. calcd for C25H20Cl2N6O2: C 59.18, H 3.97, N 16.56; found C 59.30, H 3.80, N 16.38.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(4-氟苯氧基)-3-甲基-1-(4-甲基苯基)-1H-吡唑-4-甲酰基肟(7p):白色固体, 产率62%. m.p. 116~118 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.16 (d, J=8.40 Hz, 1H), 7.90 (s, 1H), 7.74~7.77 (m, 3H), 7.53~7.58 (m, 3H), 7.43~7.46 (m, 3H), 7.16 (d, J=8.00 Hz, 2H), 6.92~6.96 (m, 2H), 6.83~6.87 (m, 2H), 5.12 (s, 2H), 2.46 (s, 3H), 2.33 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 158.72 (d, J=240.00 Hz), 152.66, 148.23, 147.13, 146.53, 140.81, 138.43, 137.40, 136.53, 134.94, 132.29, 129.82, 129.75, 128.31, 124.45, 122.73, 122.23, 120.39, 116.72, 116.46 (d, J=23.00 Hz), 110.36, 101.58, 75.33, 21.06, 14.90. Anal. calcd for C31H25FN6O2: C 69.91, H 4.73, N 15.78; found C 69.72, H 4.86, N 15.89.

    O-[4-(1H-苯并三唑-1-基)苄基]-5-(4-甲基苯氧基)-3-甲基-1-(4-甲基苯基)-1H-吡唑-4-甲酰基肟(7q):白色固体, 产率65%. m.p. 103~105 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.15 (d, J=8.40 Hz, 1H), 7.88 (s, 1H), 7.75 (d, J=8.40 Hz, 3H), 7.54~7.57 (m, 3H), 7.42~7.47 (m, 3H), 7.15 (d, J=8.40 Hz, 2H), 7.05 (d, J=8.40 Hz, 2H), 6.79 (d, J=8.80 Hz, 2H), 5.14 (s, 2H), 2.47 (s, 3H), 2.32 (s, 3H), 2.25 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 154.72, 148.07, 147.50, 146.49, 141.09, 138.49, 137.12, 136.44, 135.02, 133.14, 132.26, 130.35, 129.85, 129.66, 128.26, 124.41, 122.68, 122.11, 120.34, 115.28, 110.34, 101.56, 75.26, 21.01, 20.55, 15.07. Anal. calcd for C32H28N6O2: C 72.71, H 5.34, N 15.90; found C 72.55, H 5.16, N 15.98.

    辅助材料(Supporting Information)  目标化合物7a~7q的核磁共振氢谱与碳谱共振图谱.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.


    1. [1]

      Wang, X.; Li, P.; Li, Z. N.; Yin, J.; He, M.; Xue, W.; Chen, Z. W.; Song, B. A. J. Agric. Food Chem. 2013, 61, 9575. doi: 10.1021/jf403193q

    2. [2]

      Liu, Y. X.; Song, H. J.; Huang, Y. Q.; Li, J. R.; Zhao, S.; Song, Y. C.; Yang, P. W.; Xiao, Z. X.; Liu, Y. X.; Li, Y. Q.; Shang, H.; Wang, Q. M. J. Agric. Food Chem. 2014, 62, 9987. doi: 10.1021/jf503794g

    3. [3]

      Gan, X. H.; Hu, D. Y.; Li, P.; Wu, J.; Chen, X. W.; Xue, W. Song, B. A. Pest. Manage. Sci. 2016, 72, 534. doi: 10.1002/ps.4018

    4. [4]

      Kumar, K. S.; Ramulu, M. S.; Rajesham, B.; Kumar, N. P.; Voora, V.; Kancha, R. K. Org. Biomol. Chem. 2017, 15, 4468. doi: 10.1039/C7OB00715A

    5. [5]

      Li, P.; Hu, D. Y.; Xie, D. D.; Chen, J. X.; Jin, L. H.; Song, B. A. J. Agric. Food Chem. 2018, 66, 3093. doi: 10.1021/acs.jafc.7b06061

    6. [6]

      Yuan, Y.; Subedi, L.; Lim, D.; Jung, J. K.; Kim, S. Y.; Seo, S. Y. Bioorg. Med. Chem. Lett. 2019, 29, 329. doi: 10.1016/j.bmcl.2018.11.014

    7. [7]

      Facchetti, G.; Rimoldi, I. Bioorg. Med. Chem. Lett. 2019, 29, 1257. doi: 10.1016/j.bmcl.2019.03.045

    8. [8]

      Zhu, X. L.; Zhang, R.; Wu, Q. Y.; Song, Y. J.; Wang, Y. X.; Yang, J. F.; Yang, G. F. J. Agric. Food Chem. 2019, 67, 2774. doi: 10.1021/acs.jafc.8b06195

    9. [9]

      Prandi, C.; Occhiato, E. G. Pest. Manage. Sci. 2019, 75, 2385. doi: 10.1002/ps.5322

    10. [10]

      Zeng, D.; Wang, M. W.; Xiang, M.; Liu, L. W.; Wang, P. Y.; Li, Z.; Yang, S. Pest. Manage. Sci. 2020, 76, 2681. doi: 10.1002/ps.5814

    11. [11]

      He, F. Q.; Wang, B. L.; Li, Z. M.; Song, H. B. Chin. J. Struct. Chem. 2006, 25, 543.

    12. [12]

      Zhang, S. S.; Wan, J.; Li, X. M.; Li, C. L.; Xu, L. Z. Chem. Res. Chin. Univ. 2007, 23, 120. doi: 10.1016/S1005-9040(07)60024-5

    13. [13]

      Fu, J.; Yang, Y.; Zhang, X. W.; Mao, W. J.; Zhang, Z. M.; Zhu, H. L. Bioorg. Med. Chem. 2010, 18, 8457. doi: 10.1016/j.bmc.2010.10.049

    14. [14]

      Wan, J.; Lü, P. C.; Tian, N. N.; Zhu, H. L. J. Chem. Sci. 2010, 122, 597. doi: 10.1007/s12039-010-0094-8

    15. [15]

      Mansour, A. M.; Mohamed, M. F. Inorg. Chim. Acta 2014, 423, 373. doi: 10.1016/j.ica.2014.08.034

    16. [16]

      He, Z.; Zhang, S. F.; Xue, J. R.; Liang, Y.; Zhang, X.; Jin, L. H.; Qin, D. B. J. Organomet. Chem. 2016, 808, 12. doi: 10.1016/j.jorganchem.2016.02.005

    17. [17]

      Wan, J.; Yan, X.; Ma, C. P.; Bi, S.; Zhu, H. L. Med. Chem. Res. 2010, 19, 970. doi: 10.1007/s00044-009-9243-3

    18. [18]

      He, F. Q.; Liu, X. H.; Wang, B. L.; Li, Z. M. J. Chem. Res. 2006, 12, 809.

    19. [19]

      Ouyang, G. P.; Chen, Z.; Cai, X. J.; Song, B. A.; Bhadury, P. S.; Yang, S.; Jin, L. H.; Xue, W.; Hu, D. Y.; Zeng, S. Bioorg. Med. Chem. 2008, 16, 9699. doi: 10.1016/j.bmc.2008.09.070

    20. [20]

      Dai, H.; Ye, L. Y.; Zhuang, H. Y.; Dai, B. J.; Fang, Y.; Shi, Y. J. Molecules 2015, 20, 21870. doi: 10.3390/molecules201219811

    21. [21]

      戴红, 姚炜, 孙思宇, 李玲, 施磊, 钱宏炜, 李春建, 石健, 石玉军, 有机化学, 2017, 37, 3155. doi: 10.6023/cjoc201708020Dai, H.; Yao, W.; Sun, S. Y.; Li, L.; Shi, L.; Qian, H. W.; Li, C. J.; Shi, J.; Shi, Y. J. Chin. J. Org. Chem. 2017, 37, 3155(in Chinese). doi: 10.6023/cjoc201708020

    22. [22]

      Xiong, B.; Chen, S.; Zhu, P.; Huang, M. L.; Gao, W. J.; Zhu, R.; Qian, J. Q.; Peng, Y. F.; Zhang, Y. A.; Dai, H.; Ling, Y. Med. Chem. 2019, 15, 743. doi: 10.2174/1573406414666180827112724

    23. [23]

      Swanson, M. B.; Ivancic, W. A.; Saxena, A. M.; Allton, J. D.; O'Brien, G. K.; Suzuki, T.; Nishizawa, H.; Nokata, M. J. Agric. Food Chem. 1995, 43, 513. doi: 10.1021/jf00050a048

    24. [24]

      Fu, C. R.; Peng, J.; Ning, Y.; Liu, M.; Shan, P. C.; Liu, J.; Li, Y. Q.; Hu, F. Z.; Zhu, Y. Q.; Yang, H. Z.; Zou, X. M. Pest. Manage. Sci. 2014, 70, 1207. doi: 10.1002/ps.3672

    25. [25]

      周钱, 郑丹丹, 石玉军, 姚炜, 钱宏炜, 丁颖, 魏中昊, 沈爱宝, 冯霞, 石健, 戴红, 有机化学, 2018, 38, 3318. doi: 10.6023/cjoc201807048Zhou, Q.; Zheng, D. D.; Shi, Y. J.; Yao, W.; Qian, H. W.; Ding, Y.; Wei, Z. H.; Shen, A. B.; Feng, X.; Shi, J.; Dai, H. Chin. J. Org. Chem. 2018, 38, 3318(in Chinese). doi: 10.6023/cjoc201807048

    26. [26]

      王杨, 叶浩, 钱程, 姚炜, 李宏, 王凯, 胡兰萍, 李玲, 吴锦明, 戴红, 有机化学, 2020, 40, 232. doi: 10.6023/cjoc201908006Wang, Y.; Ye, H.; Qian, C.; Yao, W.; Li, H.; Wang, K.; Hu, L. P.; Li, L.; Wu, J. M.; Dai, H. Chin. J. Org. Chem. 2020, 40, 232(in Chinese). doi: 10.6023/cjoc201908006

    27. [27]

      Dai, H.; Yao, W.; Fang, Y.; Sun, S. Y.; Shi, Y. J.; Chen, J.; Jiang, G. Q.; Shi, J. Molecules 2017, 22, 2000. doi: 10.3390/molecules22122000

    28. [28]

      丁成荣, 潘亚运, 谭成侠, 有机化学, 2020, 40, 528.Wang, Y.; Ye, H.; Qian, C.; Yao, W.; Li, H.; Wang, K.; Hu, L. P.; Li, L.; Wu, J. M.; Dai, H. Chin. J. Org. Chem. 2020, 40, 528(in Chinese).

    29. [29]

      Tanaka, A.; Terasawa, T.; Hagihara, H.; Sakuma, Y.; Ishibe, N.; Sawada, M.; Takasugi, H.; Tanaka, H. J. Med. Chem. 1998, 41, 2390. doi: 10.1021/jm9800853

    30. [30]

      Dai, H.; Huang, M. L.; Qian, J. Q.; Liu, J.; Meng, C.; Li, Y. Y.; Ming, G. X.; Zhang, T.; Wang, S. L.; Shi, Y. J.; Yao, Y.; Ge, S. S.; Zhang, Y. A.; Ling, Y. Eur. J. Med. Chem. 2019, 166, 470. doi: 10.1016/j.ejmech.2019.01.070

  • 图式 1  目标化合物7a~7q的合成路线

    Scheme 1  Synthetic route of the target compounds 7a~7q

    图 1  化合物A~E和唑螨酯的结构

    Figure 1  Structures of compounds A~E and fenpyroximate

    图 2  目标化合物7a~7q的分子设计图

    Figure 2  Design strategy of the title compounds 7a~7q

    表 1  反应条件对化合物7g收率的影响

    Table 1.  Effects of reaction conditions on the synthesis of compound 7g

    Entry Base Solvent Reaction condition Yield/%
    1 Et3N CHCl3 Reflux for 10 h 0
    2 Na2CO3 CHCl3 Reflux for 10 h 0
    3 K2CO3 CHCl3 Reflux for 10 h 0
    4 Et3N CH3CN Reflux for 10 h 0
    5 Na2CO3 CH3CN Reflux for 10 h 0
    6 K2CO3 CH3CN Reflux for 10 h 70
    7 KOH CH3CN Reflux for 10 h 32
    8 Et3N DMF 80 ℃ for 10 h 0
    9 Na2CO3 DMF 80 ℃ for 10 h 0
    10 K2CO3 DMF 80 ℃ for 10 h 55
    11 KOH DMF 80 ℃ for 10 h 0
    下载: 导出CSV

    表 2  目标化合物7a~7q的杀虫活性(死亡率/%)a

    Table 2.  Insecticidal activities of the title compounds 7a~7q (mortality/%)

    Compd. Tetranychus cinnabarinus Aphis medicaginis Mythimna separata
    500 μg/mL 100 μg/mL 20 μg/mL 4 μg/mL 500 μg/mL 100 μg/mL 20 μg/mL 4 μg/mL 500 μg/mL 100 μg/mL
    7a 100 100 90 0 100 100 100 30 100 0
    7b 100 100 60 0 100 100 90 0 100 0
    7c 0 100 100 50 0 100 0
    7d 100 0 100 100 70 0 100 0
    7e 0 100 70 20 0 100 0
    7f 100 100 70 0 100 100 100 30 100 0
    7g 100 0 100 100 70 0 100 0
    7h 0 0 100 0
    7i 100 90 60 0 100 100 100 20 100 0
    7j 100 100 100 0 100 100 90 0 100 0
    7k 0 100 100 80 30 100 0
    7l 100 70 0 100 100 90 0 100 0
    7m 0 0 100 0
    7n 0 0 100 0
    7o 0 60 0 100 0
    7p 0 0 80 0
    7q 0 0 0
    Fenpyroximate 100 100 100
    Imidacloprid 100 100 100 100
    Pyridalyl 100 100
    a — refers to “not tested”.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  9
  • 文章访问数:  478
  • HTML全文浏览量:  56
文章相关
  • 发布日期:  2020-12-25
  • 收稿日期:  2020-08-18
  • 修回日期:  2020-09-27
  • 网络出版日期:  2020-10-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章