Palladium-Catalyzed Reductive Coupling of Aromatic Bromides and Trimethylsilyldiazomethane: Its Application to Methylation of Aromatic Compounds
- Corresponding author: Wang Jianbo, wangjb@pku.edu.cn
Citation:
Wang Shuai, Yang Cheng, Sun Shuo, Sun Hanli, Wang Jianbo. Palladium-Catalyzed Reductive Coupling of Aromatic Bromides and Trimethylsilyldiazomethane: Its Application to Methylation of Aromatic Compounds[J]. Chinese Journal of Organic Chemistry,
;2020, 40(11): 3881-3888.
doi:
10.6023/cjoc202006075
(a) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348.
(b) Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. Chem. Rev. 2011, 111, 5215.
For an example, see: Angell, R.; Aston, N. M.; Bamborough, P.; Buckton, J. B.; Cockerill, S.; deBoeck, S. J.; Edwards, C. D.; Holmes, D. S.; Jones, K. L.; Laine, D. I.; Patel, S.; Smee, P. A.; Smith, K. J.; Somers, D. O.; Walker, A. L. Bioorg. Med. Chem. Lett. 2008, 18, 4428.
(a) Schönherr, H.; Cernak, T. Angew. Chem., Int. Ed. 2013, 52, 12256.
(b) Leung, C. S.; Leung, S. S. F.; Tirado-Rives, J.; Jorgensen, W. L. J. Med. Chem. 2012, 55, 4489.
For selected recent examples, see: (a) Feng, K.; Quevedo, R. E.; Kohrt, J. T.; Oderinde, M. S.; Reilly, U.; White, M. C. Nature 2020, 580, 621.
(b) Serpier, F.; Pan, F.; Ham, W. S.; Jacq, J.; Genicot, C.; Ritter, T. Angew. Chem., Int. Ed. 2018, 57, 10697.
(c) Haydl, A. M.; Hartwig, J. F. Org. Lett. 2019, 21, 1337.
(d) Ye, W.; Yan, Z.; Wan, C.; Hou, H.; Wang, Z. Acta Chim. Sinica 2018, 76, 99(in Chinees).
(叶文波, 晏子聪, 万常峰, 侯豪情, 汪志勇, 化学学报, 2018, 76, 99.)
(a) Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. Tetrahedron 1971, 27, 3575.
(b) Ochiai, M.; Morita, K. Tetrahedron Lett. 1967, 8, 2349.
(c) Minisci, F.; Galli, R.; Cecere, M.; Malatesta, V.; Caronna, T. Tetrahedron Lett. 1968, 9, 5609.
(d) Sugimori, A.; Yamada, T.; Ishida, H.; Nose, M.; Terashima, K.; Oohata, N. Bull. Chem. Soc. Jpn. 1986, 59, 3905.
For reviews of methylation methods, see: (a) Yan, G.; Borah, A. J.; Wang, L.; Yang, M. Adv. Synth. Catal. 2015, 357, 1333.
(b) Kim, J.; Cho, S. H. Synlett 2016, 27, 2525.
(c) Hu, L.; Liu, Y. A.; Liao, X. Synlett 2018, 29, 375.
For selected examples, see: (a) Hu, L.; Liu, X.; Liao, X. Angew. Chem., Int. Ed. 2016, 55, 9743.
(b) Yang, C. T.; Zhang, Z. Q.; Liu, Y. C.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 3904.
(c) Agrawal, T.; Cook, S. P. Org. Lett. 2014, 16, 5080.
(d) Shang, R.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2015, 137, 7660.
(e) Wang, J.; Zhao, J.; Gong, H. Chem. Commun. 2017, 53, 10180.
(f) Liang, Z.; Xue, W.; Lin, K.; Gong, H. Org. Lett. 2014, 16, 5620.
(g) Shi, W.-J.; Shi, Z.-J. Chin. J. Chem. 2018, 36, 183.
Uemura, T.; Yamaguchi, M.; Chatani, N. Angew. Chem., Int. Ed. 2016, 55, 3162.
doi: 10.1002/anie.201511197
He, Z.-T.; Li, H.; Jaudl, A. M.; Whiteker, G. T.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 17197.
doi: 10.1021/jacs.8b10076
Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.; Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.; Ackerman, L. K. G.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016.
doi: 10.1021/jacs.6b01533
Kariofillis, S. K.; Shields, B. J.; Tekle-Smith, M. A.; Zacuto, M. J.; Doyle, A. G. J. Am. Chem. Soc. 2020, 142, 7683.
doi: 10.1021/jacs.0c02805
(a) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236.
(b) Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117, 13810.
(c) Xia, Y.; Wang, J. J. Am. Chem. Soc. 2020, 142, 10592.
For selected examples for reductive coupling reactions involving metal carbene species, see: (a) Xia, Y.; Hu, F.; Liu, Z.; Qu, P.; Ge, R.; Ma, C.; Zhang, Y.; Wang, Org. Lett. 2013, 15, 1784.
(b) Xia, Y.; Hu, F.; Xia, Y.; Liu, Z.; Ye, F.; Zhang, Y.; Wang, J. Synthesis 2017, 49, 1073.
For the examples of using TMSCHN2 in cross-coupling reactions, see: (a) Kudirka, R.; Van Vranken, D. L. J. Org. Chem. 2008, 73, 3585.
(b) Xu, S.; Chen, R.; Fu, Z.; Zhou, Q.; Zhang, Y.; Wang, J. ACS Catal. 2017, 7, 1993.
(a) Leiendecker, M.; Hsiao, C.-C.; Guo, L.; Alandini, N.; Rueping, M. Angew. Chem., Int. Ed. 2014, 53, 12912.
(b) Zhang, W.-X.; Ding, C.-H.; Luo, Z.-B.; Hou, X.-L.; Dai, L.-X. Tetrahedron Lett. 2006, 47, 8391.
(c) Baciocchi, E.; Rol, C.; Rosato, G. C.; Sebastiani, G. V. J. Chem. Soc., Chem. Commun. 1992, 59.
(a) Cai, G.; Huang, Y.; Du, T.; Zhang, S.; Yao, B.; Li, X. Chem. Commun. 2016, 52, 5425.
(b) Perez, I.; Sestelo, J. P.; Sarandeses, L. A. J. Am. Chem. Soc. 2001, 123, 4155.
Mu, Q.-C.; Wang, X.-B.; Ye, F.; Sun, Y.-Li.; Bai, X.-F.; Chen, J.; Xia, C.-G.; Xu, Li.-W. Chem. Commun. 2018, 54, 12994.
Tobisu, M.; Kita, Y.; Ano, Y.; Chatani, N. J. Am. Chem. Soc. 2008, 130, 15982.
doi: 10.1021/ja804992n
Suzuki, H.; Murashima, T.; Kozai, I.; Mori, T. J. Chem. Soc., Perkin Trans. 11993, 1591.
Molander, G. A.; Yun, C.-S.; Ribagorda, M.; Biolatto, B. J. Org. Chem. 2003, 68, 5534.
doi: 10.1021/jo0343331
Das, M.; O'Shea, D. F. Tetrahedron 2013, 69, 6448.
doi: 10.1016/j.tet.2013.05.078
Kalvet, I.; Sperger, T.; Scattolin, T.; Magnin, G.; Schoenebeck, F. Angew. Chem., Int. Ed. 2017, 56, 7078.
doi: 10.1002/anie.201701691
Wu, Y.; Bouvet, S.; Izquierdo, S.; Shafir, A. Angew. Chem., Int. Ed. 2019, 58, 2617.
doi: 10.1002/anie.201809657
Heijnen, D.; Hornillos, V.; Corbet, B. P.; Giannerini, M.; Feringa, B. L. Org. Lett. 2015, 17, 2262.
doi: 10.1021/acs.orglett.5b00905
Al-Masum, M.; Welch, R. L. Tetrahedron Lett. 2014, 55, 1726.
doi: 10.1016/j.tetlet.2014.01.102
Patel, P.; Borah, G. Chem. Commun. 2017, 53, 443.
doi: 10.1039/C6CC08788D
Ruan, J.; Li, X.; Saidi, O.; Xiao, J. J. Am. Chem. Soc. 2008, 130, 2424.
doi: 10.1021/ja0782955
He, K.-H.; Tan, F.-F.; Zhou, C.-Z.; Zhou, G.-J.; Yang, X.-L.; Li, Y. Angew. Chem., Int. Ed. 2017, 56, 3080.
doi: 10.1002/anie.201612486
Huckins, J. R.; Rychnovsky, S. D. J. Org. Chem. 2003, 68, 10135.
doi: 10.1021/jo035260o
Scala, A. D.; Garbacia, S.; Hélion, F.; Lannou, M.-I.; Namy, J.-L. Eur. J. Org. Chem. 2002, 2989.
Wu, X.-F.; Neumann, H.; Beller, M. Tetrahedron Lett. 2012, 53, 582.
doi: 10.1016/j.tetlet.2011.11.104
Yuhan Liu , Jingyang Zhang , Gongming Yang , Jian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790
Peng Guo , Shicheng Dong , Xiang-Gui Zhang , Bing-Bin Yang , Jun Zhu , Ke-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Zhen-Zhen Dong , Jin-Hao Zhang , Lin Zhu , Xiao-Zhong Fan , Zhen-Guo Liu , Yi-Bo Yan , Long Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Jiayuan Liang , Xin Mi , Songhao Guo , Hui Luo , Kejun Bu , Tonghuan Fu , Menglin Duan , Yang Wang , Qingyang Hu , Rengen Xiong , Peng Qin , Fuqiang Huang , Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333
Kun Tang , Fen Su , Shijie Pan , Fengfei Lu , Zhongfu Luo , Fengrui Che , Xingxing Wu , Yonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
Dong-Sheng Deng , Su-Qin Tang , Yong-Tu Yuan , Ding-Xiong Xie , Zhi-Yuan Zhu , Yue-Mei Huang , Yun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783
Li Li , Zhi-Xin Yan , Chuan-Kun Ran , Yi Liu , Shuo Zhang , Tian-Yu Gao , Long-Fei Dai , Li-Li Liao , Jian-Heng Ye , Da-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104
Le Zhang , Hui-Yu Xie , Xin Li , Li-Ying Sun , Ying-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465
Xinlong Han , Huiying Zeng , Chao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817
Lei Wan , Yizhou Tong , Xi Lu , Yao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283
Qijun Tang , Wenguang Tu , Yong Zhou , Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170
Kongchuan Wu , Dandan Lu , Jianbin Lin , Ting-Bin Wen , Wei Hao , Kai Tan , Hui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Xin Huang , Yi Zhao , Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278
Jian Ji , Jie Yan , Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360
Reaction conditions: aryl bromide (0.3 mmol), TMSCHN2 1 (2 mol/L in hexane, 0.9 mmol, 3 equiv.), Me(EtO)2SiH (0.6 mmol, 2 equiv.), Pd(OAc)2 (0.015 mmol, 5 mol%), (p-ClC6H4)3P (0.045 mmol, 15 mol%) in dioxane (2 mL) under 100 ℃ for 8 h. 1 was added slowly with a syringe pump over 3 h. All the yields refer to the isolated products after silica gel column chromatography
Reaction conditions: heteroaromatic bromide (0.3 mmol), TMS-CHN2 1 (2 mol/L in hexane, 0.9 mmol, 3 equiv.), Me(EtO)2SiH (0.6 mmol, 2 equiv.), Pd(OAc)2 (0.015 mmol, 5 mol%), (p-ClC6H4)3P (0.045 mmol, 15 mol%) in dioxane (2 mL) under 100 ℃ for 8 h. 1 was added slowly with a syringe pump over 3 h. All the yields refer to isolated products after silica gel column chromatography
Reaction conditions: the purified benzyltrimethylsilanes (obtained from the 0.3 mmol-scale reductive coupling), TBAF (1 mol/L in THF, 0.4 mmol), H2O (36 mg, 2 mmol) in THF (1 mL), 40 ℃ for 2 h. All the yields refer to isolated products after silica gel column chromatography; the number in the bracket refers to the overall yield of the two steps