Citation: Yuan Xiaoya, Yang Guoping, Yu Bing. Photoinduced Decatungstate-Catalyzed C-H Functionalization[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3620-3632. doi: 10.6023/cjoc202006068 shu

Photoinduced Decatungstate-Catalyzed C-H Functionalization

  • Corresponding author: Yu Bing, bingyu@zzu.edu.cn
  • Received Date: 29 June 2020
    Revised Date: 3 September 2020
    Available Online: 8 September 2020

    Fund Project: National Natural Science Foundation of China 21971224Project supported by the National Natural Science Foundation of China (No. 21971224)

Figures(24)

  • In recent years, decatungstate [W10O32]4- as a catalyst has attracted much attention in the field of photocatalytic organic synthesis. With the catalysis of decatungstate, the C—H bond of substrate can be converted into the corresponding radical via a hydrogen atom transfer (HAT) progress under light irradiation. In this review, we summarized the recent advances of the application of decatungstate as a photocatalyst for the C—H functionalization to construct C—C, C—N, C—F bonds.
  • 加载中
    1. [1]

      (a) Su, F.; Guo, Y. Green Chem. 2014, 16, 2934.
      (b) Omwoma, S.; Gore, C. T.; Ji, Y.; Hu, C.; Song, Y.-F. Coord. Chem. Rev. 2015, 286, 17.
      (c) Yu, B.; Zou, B.; Hu, C.-W. J. CO2 Util. 2018, 26, 314.
      (d) Wang, S.-S.; Yang, G.-Y. Chem. Rev. 2015, 115, 4893.
      (e) Yang, G.-P.; Wu, X.; Yu, B.; Hu, C.-W. ACS Sustainable Chem. Eng. 2019, 7, 3727.
      (f) Yang, G.-P.; Zhang, N.; Ma, N.-N.; Yu, B.; Hu, C.-W. Adv. Synth. Catal. 2017, 359, 926.
      (g) Ma, P.; Hu, F.; Wang, J.; Niu, J. Coord. Chem. Rev. 2019, 378, 281.
      (h) Du, D.-Y.; Qin, J.-S.; Li, S.-L.; Su, Z.-M.; Lan, Y.-Q. Chem. Soc. Rev. 2014, 43, 4615.
      (i) Chen, L.; Chen, W.-L.; Wang, X.-L.; Li, Y.-G.; Su, Z.-M.; Wang, E.-B. Chem. Soc. Rev. 2019, 48, 260.
      (j) Zhang, J.; Huang, Y.; Li, G.; Wei, Y. Coord. Chem. Rev. 2019, 378, 395.
      (k) Zhou, Y.; Guo, Z.; Hou, W.; Wang, Q.; Wang, J. Catal. Sci. Technol. 2015, 5, 4324.
      (l) Huang, B.; Yang, D.-H.; Han, B.-H. J. Mater. Chem. A 2020, 8, 4593.

    2. [2]

      Yamase, T.; Sasaki, R.; Ikawa, T. J. Chem. Soc., Dalton Trans. 1981, 628.
       

    3. [3]

      Papaconstantinou, E.; Dimotikali, D.; Politou, A. Inorg. Chim. Acta 1980, 43, 155.  doi: 10.1016/S0020-1693(00)90521-8

    4. [4]

      Hill, C. L.; Bouchard, D. A. J. Am. Chem. Soc. 1985, 107, 5148.  doi: 10.1021/ja00304a019

    5. [5]

      (a) Wang, M.-Y.; Ma, R.; He, L.-N. Sci. China Chem. 2016, 59, 507.
      (b) Lin, J.; Han, Q.; Ding, Y. Chem. Rec. 2018, 18, 1531.

    6. [6]

      Duncan, D. C.; Netzel, T. L.; Hill, C. L. Inorg. Chem. 1995, 34, 4640.  doi: 10.1021/ic00122a021

    7. [7]

      Waele, V. D.; Poizat, O.; Fagnoni, M.; Bagno, A.; Ravelli, D. ACS Catal. 2016, 6, 7174.  doi: 10.1021/acscatal.6b01984

    8. [8]

      (a) Hartwig, J. F.; Larsen, M. A. ACS Central Sci. 2016, 2, 281.
      (b) Fabry, D. C.; Zoller, J.; Rueping, M. Org. Chem. Front. 2019, 6, 2635.

    9. [9]

    10. [10]

      (a) Ravelli, D.; Fagnoni, M.; Fukuyama, T.; Nishikawa, T.; Ryu, I. ACS Catal. 2018, 8, 701.
      (b) Ravelli, D.; Protti, S.; Fagnoni, M. Acc. Chem. Res. 2016, 49, 2232.
      (c) Tzirakis, M. D.; Lykakis, I. N.; Orfanopoulos, M. Chem. Soc. Rev. 2009, 38, 2609.
      (d) Suzuki, K.; Mizuno, N.; Yamaguchi, K. ACS Catal. 2018, 8, 10809.
      (e) Capaldo, L.; Ravelli, D. Eur. J. Org. Chem. 2017, 2017, 2056.

    11. [11]

      (a) Jaynes, B. S.; Hill, C. L. J. Am. Chem. Soc. 1993, 115, 12212.
      (b) Hill, C. L. Synlett 1995, 127.
      (c) Jaynes, B. S.; Hill, C. L. J. Am. Chem. Soc. 1995, 117, 4704.

    12. [12]

      Zheng, Z.; L. Hill, C. Chem. Commun. 1998, 2467.

    13. [13]

      (a) Dondi, D.; Fagnoni, M.; Albini, A. Chem. Eur. J. 2006, 12, 4153.
      (b) Dondi, D.; Fagnoni, M.; Molinari, A.; Maldotti, A.; Albini, A. Chem. Eur. J. 2004, 10, 142.
      (c) Protti, S.; Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Commun. 2009, 7351.

    14. [14]

      Ravelli, D.; Albini, A.; Fagnoni, M. Chem. Eur. J. 2011, 17, 572.  doi: 10.1002/chem.201002546

    15. [15]

      Ryu, I.; Tani, A.; Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Albini, A. Angew. Chem. Int. Ed. 2011, 50, 1869.  doi: 10.1002/anie.201004854

    16. [16]

      Ravelli, D.; Zoccolillo, M.; Mella, M.; Fagnoni, M. Adv. Synth. Catal. 2014, 356, 2781.  doi: 10.1002/adsc.201400027

    17. [17]

      Laudadio, G.; Deng, Y.; van der Wal, K.; Ravelli, D.; Nuño, M.; Fagnoni, M.; Guthrie, D.; Sun, Y.; Noël, T. Science 2020, 369, 92.  doi: 10.1126/science.abb4688

    18. [18]

      Supranovich, V. I.; Levin, V. V.; Dilman, A. D. Org. Lett. 2019, 21, 4271.  doi: 10.1021/acs.orglett.9b01450

    19. [19]

      Esposti, S.; Dondi, D.; Fagnoni, M.; Albini, A. Angew. Chem., Int. Ed. 2007, 46, 2531.  doi: 10.1002/anie.200604820

    20. [20]

      (a) Kuang, Y.; Wang, K.; Shi, X.; Huang, X.; Meggers, E.; Wu, J. Angew. Chem., Int. Ed. 2019, 58, 16859.
      (b) Li, F.; Tian, D.; Fan, Y.; Lee, R.; Lu, G.; Yin, Y.; Qiao, B.; Zhao, X.; Xiao, Z.; Jiang, Z. Nat. Commun. 2019, 10, 1774.

    21. [21]

      Murphy, J. J.; Bastida, D.; Paria, S.; Fagnoni, M.; Melchiorre, P. Nature 2016, 532, 218.  doi: 10.1038/nature17438

    22. [22]

      Dai, Z.-Y.; Nong, Z.-S.; Wang, P.-S. ACS Catal. 2020, 10, 4786.  doi: 10.1021/acscatal.0c00610

    23. [23]

      Quattrini, M. C.; Fujii, S.; Yamada, K.; Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Ryu, I. Chem. Commun. 2017, 53, 2335.  doi: 10.1039/C6CC09725A

    24. [24]

      Perry, I. B.; Brewer, T. F.; Sarver, P. J.; Schultz, D. M.; DiRocco, D. A.; MacMillan, D. W. C. Nature 2018, 560, 70.  doi: 10.1038/s41586-018-0366-x

    25. [25]

    26. [26]

    27. [27]

      Cao, H.; Kuang, Y.; Shi, X.; Wong, K. L.; Tan, B. B.; Kwan, J. M. C.; Liu, X.; Wu, J. Nat. Commun. 2020, 11, 1956.  doi: 10.1038/s41467-020-15878-6

    28. [28]

      Yahata, K.; Sakurai, S.; Hori, S.; Yoshioka, S.; Kaneko, Y.; Hasegawa, K.; Akai, S. Org. Lett. 2020, 22, 1199.  doi: 10.1021/acs.orglett.0c00096

    29. [29]

    30. [30]

      Sarver, P. J.; Bacauanu, V.; Schultz, D. M.; DiRocco, D. A.; Lam, Y.-H.; Sherer, E. C.; MacMillan, D. W. C. Nat. Chem. 2020, 12, 459.  doi: 10.1038/s41557-020-0436-1

    31. [31]

      (a) Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chem. Rev. 1999, 99, 1991.
      (b) Bennasar, M. L.; Roca, T.; Griera, R.; Bosch, J. Org. Lett. 2001, 3, 1697.
      (c) Bath, S.; Laso, N. M.; Lopez-Ruiz, H.; Quiclet-Sire, B.; Zard, S. Z. Chem. Commun. 2003, 204.
      (d) Benati, L.; Calestani, G.; Leardini, R.; Minozzi, M.; Nanni, D.; Spagnolo, P.; Strazzari, S. Org. Lett. 2003, 5, 1313.

    32. [32]

      Fan, P.; Zhang, C.; Lan, Y.; Lin, Z.; Zhang, L.; Wang, C. Chem. Commun. 2019, 55, 12691.  doi: 10.1039/C9CC07285C

    33. [33]

      Fan, P.; Lan, Y.; Zhang, C.; Wang, C. J. Am. Chem. Soc. 2020, 142, 2180.  doi: 10.1021/jacs.9b12554

    34. [34]

      Fan, P.; Zhang, C.; Zhang, L.; Wang, C. Org. Lett. 2020, 22, 3875.  doi: 10.1021/acs.orglett.0c01121

    35. [35]

      Schirmer, T. E.; Wimmer, A.; Weinzierl, F. W. C.; König, B. Chem. Commun. 2019, 55, 10796.  doi: 10.1039/C9CC04726C

    36. [36]

      Wang, L.; Wang, T.; Cheng, G.-J.; Li, X.; Wei, J.-J.; Guo, B.; Zheng, C.; Chen, G.; Ran, C.; Zheng, C. ACS Catal. 2020, 10, 7543.  doi: 10.1021/acscatal.0c02105

    37. [37]

      Dong, J.; Wang, X.; Wang, Z.; Song, H.; Liu, Y.; Wang, Q. Chem. Sci. 2020, 11, 1026.  doi: 10.1039/C9SC05132E

    38. [38]

      Okada, M.; Fukuyama, T.; Yamada, K.; Ryu, I.; Ravelli, D.; Fagnoni, M. Chem. Sci. 2014, 5, 2893.  doi: 10.1039/C4SC01072H

    39. [39]

      Ryu, I.; Tani, A.; Fukuyama, T.; Ravelli, D.; Montanaro, S.; Fagnoni, M. Org. Lett. 2013, 15, 2554.  doi: 10.1021/ol401061v

    40. [40]

      Halperin, S. D.; Fan, H.; Chang, S.; Martin, R. E.; Britton, R. Angew. Chem., Int. Ed. 2014, 53, 4690.  doi: 10.1002/anie.201400420

    41. [41]

      Halperin, S. D.; Kwon, D.; Holmes, M.; Regalado, E. L.; Campeau, L.-C.; DiRocco, D. A.; Britton, R. Org. Lett. 2015, 17, 5200.  doi: 10.1021/acs.orglett.5b02532

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    3. [3]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    7. [7]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    8. [8]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    12. [12]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    13. [13]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    14. [14]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    19. [19]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    20. [20]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

Metrics
  • PDF Downloads(296)
  • Abstract views(7713)
  • HTML views(2295)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return