Citation: Yan Xiaojing, Li Chang, Jin Zhixiong, Xu Xiaofei, Chen Weiwei, Pan Yuanjiang. Iron Porphyrin Complexes Catalyzed Cyclopropanation Reactions and C-S Bond Cleavage Reactions for Phenyl Vinyl Sulfides and Diazoreagents[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3837-3846. doi: 10.6023/cjoc202006043 shu

Iron Porphyrin Complexes Catalyzed Cyclopropanation Reactions and C-S Bond Cleavage Reactions for Phenyl Vinyl Sulfides and Diazoreagents

  • Corresponding author: Li Chang, lichang@zju.edu.cn Pan Yuanjiang, panyuanjiang@zju.edu.cn
  • Received Date: 21 June 2020
    Revised Date: 9 August 2020
    Available Online: 18 August 2020

    Fund Project: the National Key R&D Program of China 2016YFF0200503the National Natural Science Foundation of China 21502168Project supported by the National Natural Science Foundation of China (Nos.21532005, 21502168) and the National Key R&D Program of China (No. 2016YFF0200503)the National Natural Science Foundation of China 21532005

Figures(5)

  • A catalytic system capable of selectively promoting the cyclopropanation reaction and C—S bond cleavage reaction was established. For the reactions between phenyl vinyl sulfide and diazoacetonitrile (generated by in situ method), the cyclopropanation reaction products were obtained under the catalysis of hemin chloride, and the C—S bond cleavage reaction products were generated in the presence of FePc. All the reations were operated without inert gas protection or high temperature, and the target products were obtained by stirring at room temperature for 1 h in moderate to excellent yields.
  • 加载中
    1. [1]

      (a) Nguyen, T. B. Adv. Synth. Catal. 2017, 359, 1066.
      (b) Trost, B. M. Chem. Rev. 1978, 78, 363.
      (c) Trost, B. M. Acc. Chem. Res. 1978, 11, 453.
      (d) Ranu, B. C.; Jana, R. Adv. Synth. Catal. 2005, 347, 1811.
      (e) Peng, H. J.; Cheng, Y. F.; Ni, N. T.; Li, M. Y.; Choudhary, G.; Chou, H. T.; Lu, C. D.; Tai, P. C.; Wang, B. H. ChemMedChem 2009, 4, 1457.
      (f) Clayden, J.; MacLellan, P. Beilstein J. Org. Chem. 2011, 7, 582.
      (g)Landelle, G.; Panossian, A.; Leroux, F. R. Curr. Top. Med. Chem. 2014, 14, 941.
      (h) Screttas, C. G. J. Org. Chem. 1979, 44, 713.
      (i) Yin, J. M.; Pidgeon, C. Tetrahedron Lett. 1997, 38, 5953.
      (j) Couch, E. D.; Auvil, T. J.; Mattson, A. E. Chem.-Eur. J. 2014, 20, 8283.
      (k) Dairo, T. O.; Woo, L. K. Organometallics 2017, 36, 927.

    2. [2]

      (a) Ahmed, K.; Saikia, G.; Paul, S.; Baruah, S. D.; Talukdar, H.; Sharma, M.; Islam, N. S. Tetrahedron 2019, 75, 130605.
      (b) Rayati, S.; Rezaie, S.; Nejabat, F. J. Coord. Chem. 2019, 72, 1466.
      (c) Gogoi, S. R.; Boruah, J. J.; Sengupta, G.; Saikia, G.; Ahmed, K.; Bania, K. K.; Islam, N. S. Catal. Sci. Technol. 2015, 5, 595.
      (d) Boruah, J. J.; Das, S. P.; Ankireddy, S. R.; Gogoi, S. R.; Islam, N. S. Green Chem. 2013, 15, 2944.
      (e) Tamami, B.; Yeganeh, H. Eur. Polym. J. 1999, 35, 1445.
      (f) Batigalhia, F.; Zaldini, H. M.; Ferreira, A. G.; Malvestiti, I.; Cass, Q. B. Tetrahedron 2001, 57, 9669.
      (g) Ghiron, A. F.; Thompson, R. C. Inorg. Chem. 1989, 28, 3647.

    3. [3]

      (a) Hock, K. J.; Mertens, L.; Metze, F. K.; Schmittmann, C.; Koenigs, R. M. Green Chem. 2017, 19, 905.
      (b) Sun, C.-C.; Xu, K.; Zeng, C.-C. ACS Sustainable Chem. Eng. 2019, 7, 2255.

    4. [4]

      (a) Kobayashi, S.; Ishitani, H.; Nagayama, S. Synthesis 1995, 1195.
      (b) Kobayashi, S.; Komiyama, S.; Ishitani, H. Biotechnol. Bioeng. 1998, 61, 23.
      (c) Kouznetsov, V. V. Tetrahedron 2009, 65, 2721.

    5. [5]

      Trost, B. M.; Tanigawa, Y. J. Am. Chem. Soc. 1979, 101, 4743.  doi: 10.1021/ja00510a059

    6. [6]

      Guo, L.; Tu, H.-Y.; Zhu, S.; Chu, L. L. Org. Lett. 2019, 21, 4771.  doi: 10.1021/acs.orglett.9b01658

    7. [7]

      Seath, C. P.; Vogt, D. B.; Xu, Z.; Boyington, A. J.; Jui, N. T. J. Am. Chem. Soc. 2018, 140, 15525.  doi: 10.1021/jacs.8b10238

    8. [8]

      (a) Lo, J. C.; Gui, J. H.; Yabe, Y.; Pan, C. M.; Baran, P. S. Nature 2014, 516, 343.
      (b) Lo, J. C.; Kim, D.; Pan, C. M.; Edwards, J. T.; Yabe, Y.; Gui, J. H.; Qin, T.; Gutiérrez, S.; Giacoboni, J.; Smith, M. W.; Holland, P. L.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 2484.

    9. [9]

      Debien, L.; Braun, M. G.; Quiclet, S. B.; Zard, S. Z. Org. Lett. 2013, 15, 6250.  doi: 10.1021/ol403103u

    10. [10]

      (a) Liu, J. G.; Ueda, M. J. Mater. Chem. 2009, 19, 8907.
      (b) Rodygin, K. S.; Ananikov, V. P. Green Chem. 2016, 18, 482.

    11. [11]

      (a) Galardon, E.; Le, M. P.; Simonneaux, G. Tetrahedron 2000, 56, 615.
      (b) Patil, D. V.; Cavitt, M. A.; Grzybowski, P.; France, S. Chem. Commun. 2011, 47, 10278.
      (c) Chawner, S. J.; Cases, T. M. J.; Bull, J. A. Eur. J. Org. Chem. 2017, 5015.
      (d) Chandgude, A. L.; Fasan, R. Angew. Chem. Int. Ed. 2018, 57, 15852.
      (e) Tinoco, A.; Wei, Y.; Bacik, J. P.; Carminati, D. M.; Moore, E. J.; Ando, N.; Zhang, Y.; Fasan, R. ACS Catal. 2019, 9, 1514.

    12. [12]

      Schmidt, C. D.; Kaschel, J.; Schneider, T. F.; Kratzert, D.; Stalke, D.; Werz, D. B. Org. Lett. 2013, 15, 6098.  doi: 10.1021/ol402990j

    13. [13]

      Gryko, D.; Giedyk, M.; Goliszewska, K.; ó Proinsias, K. Chem. Commun. 2016, 52, 1389.  doi: 10.1039/C5CC07363D

    14. [14]

      (a) Mehta, V. P.; Modha, S. G.; Van, E. E. J. Org. Chem. 2009, 74, 6870.
      (b) Kunchithapatham, K.; Eichman, C. C.; Stambuli, J. P. Chem. Commun. 2011, 47, 12679.
      (c) Empel, C.; Hock, K. J.; Koenigs, R. M. Chem. Commun. 2019, 55, 338.
      (d) Du, B. N.; Wang, W. M.; Wang, Y.; Qi, Z. H.; Tian, J. Q.; Zhou, J.; Wang, X. C.; Han, J. L.; Ma, J.; Pan, Y. Chem.-Asian J. 2018, 13, 404.
      (e) Ghosh, P.; Ganguly, B.; Perl, E.; Das, S. Tetrahedron Lett. 2017, 58, 2751.
      (f) Majouga, A. G.; Beloglazkina, E. K.; Moiseeva, A. A.; Shilova, O. V.; Manzheliy, E. A.; Lebedeva, M. A.; Davies, E. S.; Khlobystov, A. N.; Zyk, N. V. Dalton Trans. 2013, 42, 6290.
      (g) Desnoyer, A. N.; Love, J. A. Chem. Soc. Rev. 2017, 46, 197.

    15. [15]

      (a) Sun, R.; Du, Y.; Tian, C.; Li, L.; Wang, H.; Zhao, Y. L. Adv. Syn. Catal. 2019, 361, 5684.
      (b) Yan, X. J.; Li, C.; Xu, X. F.; He, Q.; Zhao, X. Y.; Pan, Y. J. Tetrahedron 2019, 75, 3081.
      (c) Yan, X. J.; Li, C.; Xu, X. F.; Zhao, X. Y.; Pan, Y. J. Adv. Synth. Catal. 2020, 362, 2005.

    16. [16]

      (a) Schmink, J. R.; Dockrey, S. A. B.; Zhang, T. Y.; Chebet, N.; Venrooy, A.; Sexton, M.; Lew, S. I.; Chou, S.; Okazaki, A. Org. Lett. 2016, 6360.
      (b) Liu, T, Qiu, R. H.; Zhu, L. Z.; Yin, S. F.; Au, C. T.; Kambe, N. Chem.-Asian J. 2018, 13, 3833.
      (c) Matt, C.; Kölblin, F.; Streuff, J. Org. Lett. 2019, 21, 6983.

    17. [17]

      Xu, X. F.; Li, C.; Tao, Z. H.; Pan, Y. J. Adv. Synth. Catal. 2015, 357, 3341.  doi: 10.1002/adsc.201500418

    18. [18]

      Xu, X. F.; Li, C.; Tao, Z. H.; Pan, Y. J. Green Chem. 2017, 19, 1245.  doi: 10.1039/C6GC02681H

    19. [19]

      Xu, X. F.; Li, C.; Xiong, M. T.; Tao, Z. H.; Pan, Y. J. Chem. Commun. 2017, 53, 6219.  doi: 10.1039/C7CC02484C

    20. [20]

      Fu, Y.; Zhang, Y. L.; Gao, Z. H.; Wu, Y. Z.; Zhong, F. R. Org. Biomol. Chem. 2019, 17, 9994.  doi: 10.1039/C9OB02151E

    21. [21]

      (a) Vargas, D. A.; Tinoco, A.; Tyagi, V.; Fasan, R. Angew. Chem. Int. Ed. 2018, 57, 9911.
      (b) Brandenberg, O. F.; Chen, K.; Arnold, F. H. J. Am. Chem. Soc. 2019, 141, 8989.
      (c) Sreenilayam, G.; Fasan, R. Chem. Commun. 2015, 51, 1532.
      (d) Lewis, R. D.; Garcia, B. M.; Chalkley, M. J.; Buller, A. R.; Houk. K. N.; Jennifer Kan, S. B.; Arnold, F. H. Proc. Natl. Acad. Sci. 2018, 115, 7308.
      (e) Kan, S. B. J.; Lewis, R. D.; Chen, K.; Arnold, F. H. Science 2016, 354, 1048.

    22. [22]

      (a) Curtius, T. Ber. Dtsch. Chem. Ges. 1898, 31, 2489.
      (b) Mykhailiuk, P. K. Eur. J. Org. Chem. 2015, 2015, 7235.
      (c) Empel, C.; Hock, K. J.; Koenigs, R. M. Org. Biomol. Chem. 2018, 16, 7129.

    23. [23]

      Mykhailiuk, P. K.; Koenigs, R. M. Chem.-Eur. J., 2020, 26, 89.  doi: 10.1002/chem.201903335

    24. [24]

      (a) Renata, H.; Lewis, R. D.; Sweredoski, M. J.; Moradian, A.; Hess, S.; Wang, Z. J.; Arnold, F. H. J. Am. Chem. Soc. 2016, 138, 12527.
      (b) Li, Y.; Huang, J. S.; Zhou, Z. Y.; Che, C. M.; You, X. Z. J. Am. Chem. Soc. 2002, 124, 13185.

    25. [25]

      (a) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.
      (b) Melvin, L. S. Sulfur Ylides: Emerging Synthetic Intermediates, Academic Press, New York, 1975.

    26. [26]

      Okimoto, Y.; Sakaguchi, S.; Ishii, Y. J. Am. Chem. Soc. 2002, 124, 1590.  doi: 10.1021/ja0173932

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    7. [7]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    8. [8]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    9. [9]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    12. [12]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    13. [13]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    14. [14]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    15. [15]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    16. [16]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    19. [19]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    20. [20]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

Metrics
  • PDF Downloads(14)
  • Abstract views(2805)
  • HTML views(384)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return