Citation: Yan Xiaojing, Li Chang, Jin Zhixiong, Xu Xiaofei, Chen Weiwei, Pan Yuanjiang. Iron Porphyrin Complexes Catalyzed Cyclopropanation Reactions and C-S Bond Cleavage Reactions for Phenyl Vinyl Sulfides and Diazoreagents[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3837-3846. doi: 10.6023/cjoc202006043 shu

Iron Porphyrin Complexes Catalyzed Cyclopropanation Reactions and C-S Bond Cleavage Reactions for Phenyl Vinyl Sulfides and Diazoreagents

  • Corresponding author: Li Chang, lichang@zju.edu.cn Pan Yuanjiang, panyuanjiang@zju.edu.cn
  • Received Date: 21 June 2020
    Revised Date: 9 August 2020
    Available Online: 18 August 2020

    Fund Project: the National Key R&D Program of China 2016YFF0200503the National Natural Science Foundation of China 21502168Project supported by the National Natural Science Foundation of China (Nos.21532005, 21502168) and the National Key R&D Program of China (No. 2016YFF0200503)the National Natural Science Foundation of China 21532005

Figures(5)

  • A catalytic system capable of selectively promoting the cyclopropanation reaction and C—S bond cleavage reaction was established. For the reactions between phenyl vinyl sulfide and diazoacetonitrile (generated by in situ method), the cyclopropanation reaction products were obtained under the catalysis of hemin chloride, and the C—S bond cleavage reaction products were generated in the presence of FePc. All the reations were operated without inert gas protection or high temperature, and the target products were obtained by stirring at room temperature for 1 h in moderate to excellent yields.
  • 加载中
    1. [1]

      (a) Nguyen, T. B. Adv. Synth. Catal. 2017, 359, 1066.
      (b) Trost, B. M. Chem. Rev. 1978, 78, 363.
      (c) Trost, B. M. Acc. Chem. Res. 1978, 11, 453.
      (d) Ranu, B. C.; Jana, R. Adv. Synth. Catal. 2005, 347, 1811.
      (e) Peng, H. J.; Cheng, Y. F.; Ni, N. T.; Li, M. Y.; Choudhary, G.; Chou, H. T.; Lu, C. D.; Tai, P. C.; Wang, B. H. ChemMedChem 2009, 4, 1457.
      (f) Clayden, J.; MacLellan, P. Beilstein J. Org. Chem. 2011, 7, 582.
      (g)Landelle, G.; Panossian, A.; Leroux, F. R. Curr. Top. Med. Chem. 2014, 14, 941.
      (h) Screttas, C. G. J. Org. Chem. 1979, 44, 713.
      (i) Yin, J. M.; Pidgeon, C. Tetrahedron Lett. 1997, 38, 5953.
      (j) Couch, E. D.; Auvil, T. J.; Mattson, A. E. Chem.-Eur. J. 2014, 20, 8283.
      (k) Dairo, T. O.; Woo, L. K. Organometallics 2017, 36, 927.

    2. [2]

      (a) Ahmed, K.; Saikia, G.; Paul, S.; Baruah, S. D.; Talukdar, H.; Sharma, M.; Islam, N. S. Tetrahedron 2019, 75, 130605.
      (b) Rayati, S.; Rezaie, S.; Nejabat, F. J. Coord. Chem. 2019, 72, 1466.
      (c) Gogoi, S. R.; Boruah, J. J.; Sengupta, G.; Saikia, G.; Ahmed, K.; Bania, K. K.; Islam, N. S. Catal. Sci. Technol. 2015, 5, 595.
      (d) Boruah, J. J.; Das, S. P.; Ankireddy, S. R.; Gogoi, S. R.; Islam, N. S. Green Chem. 2013, 15, 2944.
      (e) Tamami, B.; Yeganeh, H. Eur. Polym. J. 1999, 35, 1445.
      (f) Batigalhia, F.; Zaldini, H. M.; Ferreira, A. G.; Malvestiti, I.; Cass, Q. B. Tetrahedron 2001, 57, 9669.
      (g) Ghiron, A. F.; Thompson, R. C. Inorg. Chem. 1989, 28, 3647.

    3. [3]

      (a) Hock, K. J.; Mertens, L.; Metze, F. K.; Schmittmann, C.; Koenigs, R. M. Green Chem. 2017, 19, 905.
      (b) Sun, C.-C.; Xu, K.; Zeng, C.-C. ACS Sustainable Chem. Eng. 2019, 7, 2255.

    4. [4]

      (a) Kobayashi, S.; Ishitani, H.; Nagayama, S. Synthesis 1995, 1195.
      (b) Kobayashi, S.; Komiyama, S.; Ishitani, H. Biotechnol. Bioeng. 1998, 61, 23.
      (c) Kouznetsov, V. V. Tetrahedron 2009, 65, 2721.

    5. [5]

      Trost, B. M.; Tanigawa, Y. J. Am. Chem. Soc. 1979, 101, 4743.  doi: 10.1021/ja00510a059

    6. [6]

      Guo, L.; Tu, H.-Y.; Zhu, S.; Chu, L. L. Org. Lett. 2019, 21, 4771.  doi: 10.1021/acs.orglett.9b01658

    7. [7]

      Seath, C. P.; Vogt, D. B.; Xu, Z.; Boyington, A. J.; Jui, N. T. J. Am. Chem. Soc. 2018, 140, 15525.  doi: 10.1021/jacs.8b10238

    8. [8]

      (a) Lo, J. C.; Gui, J. H.; Yabe, Y.; Pan, C. M.; Baran, P. S. Nature 2014, 516, 343.
      (b) Lo, J. C.; Kim, D.; Pan, C. M.; Edwards, J. T.; Yabe, Y.; Gui, J. H.; Qin, T.; Gutiérrez, S.; Giacoboni, J.; Smith, M. W.; Holland, P. L.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 2484.

    9. [9]

      Debien, L.; Braun, M. G.; Quiclet, S. B.; Zard, S. Z. Org. Lett. 2013, 15, 6250.  doi: 10.1021/ol403103u

    10. [10]

      (a) Liu, J. G.; Ueda, M. J. Mater. Chem. 2009, 19, 8907.
      (b) Rodygin, K. S.; Ananikov, V. P. Green Chem. 2016, 18, 482.

    11. [11]

      (a) Galardon, E.; Le, M. P.; Simonneaux, G. Tetrahedron 2000, 56, 615.
      (b) Patil, D. V.; Cavitt, M. A.; Grzybowski, P.; France, S. Chem. Commun. 2011, 47, 10278.
      (c) Chawner, S. J.; Cases, T. M. J.; Bull, J. A. Eur. J. Org. Chem. 2017, 5015.
      (d) Chandgude, A. L.; Fasan, R. Angew. Chem. Int. Ed. 2018, 57, 15852.
      (e) Tinoco, A.; Wei, Y.; Bacik, J. P.; Carminati, D. M.; Moore, E. J.; Ando, N.; Zhang, Y.; Fasan, R. ACS Catal. 2019, 9, 1514.

    12. [12]

      Schmidt, C. D.; Kaschel, J.; Schneider, T. F.; Kratzert, D.; Stalke, D.; Werz, D. B. Org. Lett. 2013, 15, 6098.  doi: 10.1021/ol402990j

    13. [13]

      Gryko, D.; Giedyk, M.; Goliszewska, K.; ó Proinsias, K. Chem. Commun. 2016, 52, 1389.  doi: 10.1039/C5CC07363D

    14. [14]

      (a) Mehta, V. P.; Modha, S. G.; Van, E. E. J. Org. Chem. 2009, 74, 6870.
      (b) Kunchithapatham, K.; Eichman, C. C.; Stambuli, J. P. Chem. Commun. 2011, 47, 12679.
      (c) Empel, C.; Hock, K. J.; Koenigs, R. M. Chem. Commun. 2019, 55, 338.
      (d) Du, B. N.; Wang, W. M.; Wang, Y.; Qi, Z. H.; Tian, J. Q.; Zhou, J.; Wang, X. C.; Han, J. L.; Ma, J.; Pan, Y. Chem.-Asian J. 2018, 13, 404.
      (e) Ghosh, P.; Ganguly, B.; Perl, E.; Das, S. Tetrahedron Lett. 2017, 58, 2751.
      (f) Majouga, A. G.; Beloglazkina, E. K.; Moiseeva, A. A.; Shilova, O. V.; Manzheliy, E. A.; Lebedeva, M. A.; Davies, E. S.; Khlobystov, A. N.; Zyk, N. V. Dalton Trans. 2013, 42, 6290.
      (g) Desnoyer, A. N.; Love, J. A. Chem. Soc. Rev. 2017, 46, 197.

    15. [15]

      (a) Sun, R.; Du, Y.; Tian, C.; Li, L.; Wang, H.; Zhao, Y. L. Adv. Syn. Catal. 2019, 361, 5684.
      (b) Yan, X. J.; Li, C.; Xu, X. F.; He, Q.; Zhao, X. Y.; Pan, Y. J. Tetrahedron 2019, 75, 3081.
      (c) Yan, X. J.; Li, C.; Xu, X. F.; Zhao, X. Y.; Pan, Y. J. Adv. Synth. Catal. 2020, 362, 2005.

    16. [16]

      (a) Schmink, J. R.; Dockrey, S. A. B.; Zhang, T. Y.; Chebet, N.; Venrooy, A.; Sexton, M.; Lew, S. I.; Chou, S.; Okazaki, A. Org. Lett. 2016, 6360.
      (b) Liu, T, Qiu, R. H.; Zhu, L. Z.; Yin, S. F.; Au, C. T.; Kambe, N. Chem.-Asian J. 2018, 13, 3833.
      (c) Matt, C.; Kölblin, F.; Streuff, J. Org. Lett. 2019, 21, 6983.

    17. [17]

      Xu, X. F.; Li, C.; Tao, Z. H.; Pan, Y. J. Adv. Synth. Catal. 2015, 357, 3341.  doi: 10.1002/adsc.201500418

    18. [18]

      Xu, X. F.; Li, C.; Tao, Z. H.; Pan, Y. J. Green Chem. 2017, 19, 1245.  doi: 10.1039/C6GC02681H

    19. [19]

      Xu, X. F.; Li, C.; Xiong, M. T.; Tao, Z. H.; Pan, Y. J. Chem. Commun. 2017, 53, 6219.  doi: 10.1039/C7CC02484C

    20. [20]

      Fu, Y.; Zhang, Y. L.; Gao, Z. H.; Wu, Y. Z.; Zhong, F. R. Org. Biomol. Chem. 2019, 17, 9994.  doi: 10.1039/C9OB02151E

    21. [21]

      (a) Vargas, D. A.; Tinoco, A.; Tyagi, V.; Fasan, R. Angew. Chem. Int. Ed. 2018, 57, 9911.
      (b) Brandenberg, O. F.; Chen, K.; Arnold, F. H. J. Am. Chem. Soc. 2019, 141, 8989.
      (c) Sreenilayam, G.; Fasan, R. Chem. Commun. 2015, 51, 1532.
      (d) Lewis, R. D.; Garcia, B. M.; Chalkley, M. J.; Buller, A. R.; Houk. K. N.; Jennifer Kan, S. B.; Arnold, F. H. Proc. Natl. Acad. Sci. 2018, 115, 7308.
      (e) Kan, S. B. J.; Lewis, R. D.; Chen, K.; Arnold, F. H. Science 2016, 354, 1048.

    22. [22]

      (a) Curtius, T. Ber. Dtsch. Chem. Ges. 1898, 31, 2489.
      (b) Mykhailiuk, P. K. Eur. J. Org. Chem. 2015, 2015, 7235.
      (c) Empel, C.; Hock, K. J.; Koenigs, R. M. Org. Biomol. Chem. 2018, 16, 7129.

    23. [23]

      Mykhailiuk, P. K.; Koenigs, R. M. Chem.-Eur. J., 2020, 26, 89.  doi: 10.1002/chem.201903335

    24. [24]

      (a) Renata, H.; Lewis, R. D.; Sweredoski, M. J.; Moradian, A.; Hess, S.; Wang, Z. J.; Arnold, F. H. J. Am. Chem. Soc. 2016, 138, 12527.
      (b) Li, Y.; Huang, J. S.; Zhou, Z. Y.; Che, C. M.; You, X. Z. J. Am. Chem. Soc. 2002, 124, 13185.

    25. [25]

      (a) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.
      (b) Melvin, L. S. Sulfur Ylides: Emerging Synthetic Intermediates, Academic Press, New York, 1975.

    26. [26]

      Okimoto, Y.; Sakaguchi, S.; Ishii, Y. J. Am. Chem. Soc. 2002, 124, 1590.  doi: 10.1021/ja0173932

  • 加载中
    1. [1]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    2. [2]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    7. [7]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    8. [8]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    9. [9]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    10. [10]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    11. [11]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    12. [12]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    13. [13]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    14. [14]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    15. [15]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    18. [18]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    19. [19]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    20. [20]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

Metrics
  • PDF Downloads(16)
  • Abstract views(3379)
  • HTML views(433)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return