Visible-Light Induced Sulfonylation of Nitroolefins for the Synthesis of Vinyl Sulfones under Photocatalyst Free Conditions

Demao Chen Yuanyuan Sun Daoqing Dong Qingqing Han Zuli Wang

Citation:  Chen Demao, Sun Yuanyuan, Dong Daoqing, Han Qingqing, Wang Zuli. Visible-Light Induced Sulfonylation of Nitroolefins for the Synthesis of Vinyl Sulfones under Photocatalyst Free Conditions[J]. Chinese Journal of Organic Chemistry, 2020, 40(12): 4267-4273. doi: 10.6023/cjoc202006025 shu

无催化剂条件下可见光诱导硝基烯烃磺酰化合成乙烯基砜

    通讯作者: 王祖利, wangzulichem@163.com
  • 基金项目:

    国家自然科学基金 21772107

    山东省重点研发计划 2019GSF108017

    国家自然科学基金(No.21772107)、山东省重点研发计划(No.2019GSF108017)资助项目

摘要: 开发了一种环境友好的可见光诱导的方法,该方法是在无光催化剂的条件下,由硝基烯烃与亚磺酸反应合成乙烯基砜.操作简单,反应条件温和,底物范围广,目标产物收率高,使得这种方法前景广阔.活性测试表明,部分目标化合物对苹果腐烂菌与柑橘炭疽病菌具有中等以上的抑制率.

English

  • Vinyl sulfone compounds are broadly utilized in natural products and medicinal chemistry.[1] In organic chemistry, vinyl sulfones are also effective Michael acceptors and 2π partners in cycloaddition reactions.[2] Because of the importance of vinyl sulfones, much efforts have been paid for developing various efficient methods for their synthesis. At present, various approaches for the synthesis of vinyl sulfones have been established.[3] The coupling reaction of sodium sulfinate with alkenes or alkynes is one of these methods for the synthesis of vinyl sulfones.[4] For example, in 2016, an Mn(Ⅲ)-mediated regioselective synthesis of (E)-vinyl sulfones from sodium sulfinates and nitroolefins was described by Chen's group (Scheme 1a).[5] Arylsulfonyl hydrazides are also good partners to react with olefins (Scheme 1b), [6] cinnamic acids (Scheme 1c)[7] or alkyne derivatives (Scheme 1d)[8] for the synthesis of vinyl sulfones. While significant developments have been made, some disadvantages such as metal catalyst or high temperature are needed for some of these methods, which limit their further application. Developing new versatile and practical methods for synthesis of vinyl sulfones still remain desirable.

    Scheme 1

    Scheme 1.  Synthesis of vinyl sulfones

    Since the pioneering work on visible light-induced organic reactions by MacMillan, [9] visible-light induced reactions have received wide research interest in recent years because of its green and sustainable chemistry character.[10] Among various visible-light induced organic transformations, great progress has been made on C—S bond formation reactions.[11] In the photoredox catalytic process, a variety of S—H, S—S, S—C, S—N, and S—X (F, Cl, Br, I) bonds, and even active sulfone-containing skeletons can be easily transformed into the corresponding thioyl/sul- fonyl radicals.[12] Wang group[13] described a visible-light- induced direct thiolation at α-C(sp3)—H of ethers with diaryl disulfides for the preparation of α-arylthioethers. The oxysulfonylation of alkenes with arylsulfinic acids was achieved by Yang et al.[14] under visible light leading to keto sulfones. A photoredox process for the synthesis of vinyl sulfones from alkenes and aryl sulfinates was developed by Meyer and co-workers.[15] Sun et al.[16] found that sulfonylated isoquinolinediones can be synthesized efficiently under irradiation of 5 W blue LED (light emitting diode) with sulfonyl chlorides as sulfonyl source. Using O2 as sole terminal oxidant, a visible light-promoted decarboxylative cross- coupling reaction of cinnamate acids with sulfonyl hydrazides was presented by Cai's group.[17] In consistence with our research interest in C—H bond activation and green chemistry, [18] herein we describe a new protocol to access vinyl sulfones via visible-light induced sulfonylation of nitroolefins under photocatalyst free conditions.

    The sulfonylation of (E)-(2-nitrovinyl)benzene with sulfinic acid was selected as a model reaction. To our delight, the product 3a was obtained in 59% yield in the presence of N-hydroxyphthalimide (NHPI) as catalyst in CH3CN at room temperature (Table 1, Entry 1). Encouraged by this result, other solvents such as 1, 2-dichloroethane (DCE), acetone, dichloromethane (DCM) and o-dichlorobenzene (o-DCB) were tested (Table 1, Entries 2~5). It was found that 80% yield of 3a was obtained when o-DCB was used as solvent. It is worth noting that the product could also be isolated in 81% yield in the absence of catalyst (Table 1, Entry 6). Subsequently, the effect of additive on the sulfonylation reaction such as 1, 5-diazabicyclo[4.3.0]non- 5-ene (DBU), triethylamine (TEA), K2CO3, 4-dimethyl- aminopyridine (DMAP) were investigated (Table 1, Entries 7~10) and it was found that the yield of 3a decreased remarkably. Then the effect of light source on this reaction was investigated. It was found that 88% yield of 3a was obtained when the reaction was conducted under green LED irradiation (Table 1, Entry 11). Use of purple LED and blue LED lead to slower reaction (Table 1, Entries 12~13). If the reaction was conducted in dark, only trace of product was obtained (Table 1, Entry 14). This result showed that light irradiation was essential for this reaction.

    Table 1

    Table 1.  Optimization of the reaction conditionsa
    下载: 导出CSV
    Entry Catalyst Solvent Additive Yieldb/%
    1 NHPI MeCN 59
    2 NHPI DCE 43
    3 NHPI Acetone 66
    4 NHPI DCM 37
    5 NHPI o-DCB 80
    6 o-DCB 81
    7 o-DCB DBU Trace
    8 o-DCB TEA 8
    9 o-DCB K2CO3 Trace
    10 o-DCB DMAP Trace
    11c o-DCB 88
    12d o-DCB 38
    13e o-DCB 45
    14f o-DCB Trace
    a Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), catalyst (10 mol%), solvent (1 mL), additive (0.4 mmol) under nitrogen atmosphere at room temperature using white LED (8 W) for 12 h. b Isolated yield. c Using green LEDs (8 W). d Using purple LEDs (8 W). e Using blue LEDs (8 W). f In the dark.

    Having the optimized reaction conditions in hand, the generality of this ecofriendly protocol was explored. As shown in Table 2, various sulfinic acids such as benzenesulfinic acid, 2-chlorobenzenesulfinic acid, 4-methylbenze- nesulfinic acid and 4-bromobe-nzenesulfinic acid worked well with (E)-(2-nitrovinyl)benzene, providing the desired products in 82%~90% yields (3a~3d). In particular, naphthalene-2-sulfinic acid was also effective in this reaction and the corresponding product was isolated in 75% yield (3e). These results indicated that the reactions were not sensitive to the nature of the substituent groups. On the other hand, this transformation was also applicable to various nitroolefins. Nitroolefins containing Cl, F, CH3, CH3O on the phenyl rings reacted smoothly with benzenesulfinic acid, giving the desired products in 78%~89% yields (3f~3k). To further investigate the scope of the reaction, the sulfonylation reactions of substituted nitroolefins and substituted sulfinic acids were investigated (3l~3u). Whether monosubstituted nitroolefins or disubstituted nitroolefins could all be transformed to the corresponding products in moderate to high yields. It is important to note that (E)-2-(2-nitrovinyl)naphthalene and (E)-2-(2-nitro- vinyl)thiophene were also suitable for this reaction and the corresponding products were isolated in moderate yields (3v~3z).

    Table 2

    Table 2.  Reaction Scopeabrrhzimage:30:erhhz
    下载: 导出CSV
    a Reaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), o-DCB (1 mL), under a nitrogen atmosphere at room temperature using green LEDs (8 W).

    To clarify the mechanism of this process, radical-trap- ping reagent, 2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEM- PO) was added to the system, whereupon the reaction was completely inhibited (Scheme 2), which suggests that free-radical intermediates maybe involved in the reaction. However the exact reaction mechanism is not clear at the present stage.

    Scheme 2

    Scheme 2.  Control experiment

    An on/off visible light irradiation experiment was conducted to certify the effect of light irradiation (Figure 1). The results indicated that the continuous irradiation of visible-light should be required for this reaction.

    Figure 1

    Figure 1.  On/off experiments

    Base on the present results and related literatures, [3o, 5, 18] a possible reaction mechanism is proposed (Scheme 3). Initially, a sulfonyl radical is formed from sulfinic acids in the presence of visible light. Then the radical addition of sulfonyl radical and nitroolefins occurs to give benzylic radical. Finally, the products are obtained via elimination of NO2 group.

    Scheme 3

    Scheme 3.  Reaction mechanism

    In order to discover the biological activity of these desired products, several products from Table 2 were preliminarily examined for anti-microbial activity using mycelia growth inhibitory rate methods. As can be seen from Table 3 (see SI), products we tested exhibited moderate inhibitory activity against V. mali and C. glecosporioides. These results will be helpful for further research and development of pesticides.

    In conclusion, an eco-friendly visible light-induced approach for the synthesis of vinyl sulfones from the reaction of nitroolefins with sulfinic acid was successfully developed. Simple operation, mild reaction conditions, broad substrate scope, good yields of the desired products made this transformation have an excellent prospect. The anti-microbial activity test showed that some of the compounds had moderate inhibitory rate against V. mali and C. glecosporioides. Further work toward expanding this work and exploring reaction mechanism are underway in our laboratory.

    NMR spectra were recorded on a BRUKER AVANCE Ⅲ HD 500 MHz spectrometers, operating at 500 MHz for 1H NMR and 126 MHz for 13C NMR acquisitions. 1H NMR chemical shifts (δ) are relative to TMS (δ=0.0); chemical shifts for 13C NMR spectra are reported from TMS with the solvent as the internal standard. HRMS spectra were performed on an Orbitrap Fusion Lumos. All major chemicals and solvents were obtained from commercial sources and used without further purification.

    A sealable reaction tube equipped with a magnetic stirrer bar was charged with nitrostyrene (0.2 mmol), phenyl- sulfinic acid (2.0 equiv.), and o-DCB (1 mL) under nitrogen atmosphere at room temperature using green LEDs (8 W) for 12 h. After completion, it was diluted with ethyl acetate. After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel to afford the corresponding product.

    (E)-(2-(Phenylsulfonyl)vinyl)benzene (3a): 42.9 mg, yield 88%. Yellow solid, m.p. 73.2~74.9 ℃ (lit.[19] 67~68 ℃); 1H NMR (500 MHz, CDCl3) δ: 8.01~7.92 (m, 2H), 7.69 (d, J=15.4 Hz, 1H), 7.61 (t, J=7.4 Hz, 1H), 7.54 (t, J=7.6 Hz, 2H), 7.51~7.45 (m, 2H), 7.39 (t, J=7.5 Hz, 3H), 6.87 (d, J=15.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 142.5, 140.8, 133.4, 132.4, 131.2, 129.3, 129.1, 128.6, 127.6, 127.3.

    (E)-1-Chloro-2-(styrylsulfonyl)benzene (3b): 50.2 mg, yield 90%. White solid, m.p. 182.1~183.6 ℃ (lit.[18] 200~201 ℃); 1H NMR (500 MHz, CDCl3) δ: 8.23 (dd, J=7.9, 1.5 Hz, 1H), 7.77 (d, J=15.4 Hz, 1H), 7.53 (ddd, J=9.6, 6.5, 1.6 Hz, 4H), 7.50~7.39 (m, 4H), 7.08 (d, J=15.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 145.3, 138.2, 134.5, 132.8, 132.3, 131.9, 131.4, 130.7, 129.1, 128.7, 127.4, 125.2.

    (E)-1-Methyl-4-(styrylsulfonyl)benzene (3c): 43.8 mg, yield 85%. White solid, m.p. 118.3~119.6 ℃ (lit.[19] 126 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.83 (d, J=8.3 Hz, 2H), 7.66 (d, J=15.4 Hz, 1H), 7.48 (dd, J=7.6, 1.8 Hz, 2H), 7.40 (dd, J=5.8, 3.8 Hz, 3H), 7.34 (d, J=8.0 Hz, 2H), 6.85 (d, J=15.4 Hz, 1H), 2.44 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 144.4, 141.9, 137.7, 132.4, 131.1, 129.9, 129.0, 128.5, 127.6, 21.6.

    (E)-1-Bromo-4-(styrylsulfonyl)benzene (3d): 56.0 mg, yield 87%. Yellow solid, m.p. 101.3~102.7 ℃ (lit.[19] 103.5~104.5 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.81 (d, J=8.6 Hz, 2H), 7.69 (dd, J=12.0, 3.3 Hz, 3H), 7.52~7.46 (m, 2H), 7.46~7.37 (m, 3H), 6.83 (d, J=15.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 143.1, 139.8, 132.6, 132.2, 131.4, 129.2, 128.6, 126.8.

    (E)-2-(Styrylsulfonyl)naphthalene (3e): 44.6 mg, yield 76%. White solid, m.p. 132.2~133.6 ℃ (lit.[23] 138~140 ℃); 1H NMR (500 MHz, CDCl3) δ: 8.55 (s, 1H), 7.99 (dd, J=8.2, 5.1 Hz, 2H), 7.94~7.86 (m, 2H), 7.75 (d, J=15.4 Hz, 1H), 7.69~7.59 (m, 2H), 7.52~7.46 (m, 2H), 7.43~7.34 (m, 3H), 6.92 (d, J=15.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 142.5, 137.6, 135.2, 132.4, 131.2, 129.6, 129.2, 128.6, 127.9, 127.6, 127.4, 122.6.

    (E)-1-Chloro-4-(2-(phenylsulfonyl)vinyl)benzene (3f): 47.8 mg, yield 86%. White solid, m.p. 124.3~125.6 ℃ (lit.[19] 131 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.98~7.92 (m, 2H), 7.68~7.61 (m, 2H), 7.59~7.54 (m, 2H), 7.45~7.40 (m, 2H), 7.39~7.35 (m, 2H), 6.84 (d, J=15.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 140.9, 140.5, 137.3, 133.5, 130.8, 129.7, 129.4, 127.9, 127.7.

    (E)-2, 4-Dichloro-1-(2-(phenylsulfonyl)vinyl)benzene (3g): 54.2 mg, yield 87%. White solid, m.p. 128.2~129.8 ℃ (lit.[20] 132~133 ℃); 1H NMR (500 MHz, CDCl3) δ: 8.06~7.93 (m, 3H), 7.69~7.62 (m, 1H), 7.57 (t, J=7.7 Hz, 2H), 7.49~7.41 (m, 2H), 7.26 (dt, J=8.5, 4.2 Hz, 1H), 6.90 (d, J=15.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 140.1, 137.4, 137.1, 135.9, 133.6, 130.6, 130.2, 129.4, 129.0, 127.8.

    (E)-1-Fluoro-4-(2-(phenylsulfonyl)vinyl)benzene (3h): 47.6 mg, yield 91%. Yellow solid, m.p. 103.6~105.2 ℃ (lit.[19] 108~110 ℃); 1H NMR (500 MHz, CDCl3) δ: 8.01~7.91 (m, 2H), 7.70~7.60 (m, 2H), 7.55 (dd, J=10.6, 4.7 Hz, 2H), 7.52~7.44 (m, 2H), 7.14~7.03 (m, 2H), 6.80 (d, J=15.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 165.4, 163.3, 141.1, 140.6, 133.4, 130.6, 129.3, 128.6, 127.6, 127.1, 116.4, 116.2.

    (E)-1-Methyl-4-(2-(phenylsulfonyl)vinyl)benzene (3i): 43.8 mg, yield 85%. Yellow solid, m.p. 129.5~131.1 ℃ (lit.[19] 138 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.95 (ddd, J=8.6, 5.3, 3.3 Hz, 2H), 7.66 (d, J=15.4 Hz, 1H), 7.63~7.58 (m, 1H), 7.57~7.51 (m, 2H), 7.37 (d, J=8.1 Hz, 2H), 7.19 (d, J=8.0 Hz, 2H), 6.81 (d, J=15.4 Hz, 1H), 2.36 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 142.6, 141.9, 140.9, 133.3, 129.8, 129.6, 129.3, 128.6, 127.6, 126.0, 21.5.

    (E)-1, 2-Dimethyl-4-(2-(phenylsulfonyl)vinyl)benzene (3j): 39.7 mg, yield 73%. Yellow solid, m.p. 131.2~132.6 ℃ (lit.[21] oil); 1H NMR (500 MHz, CDCl3) δ: 7.94 (d, J=7.5 Hz, 2H), 7.62 (dd, J=19.2, 11.4 Hz, 2H), 7.54 (t, J=7.6 Hz, 2H), 7.27~7.20 (m, 2H), 7.14 (d, J=7.8 Hz, 1H), 6.80 (d, J=15.4 Hz, 1H), 2.26 (d, J=8.9 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ: 142.8, 141.0, 140.6, 137.4, 133.2, 130.3, 130.0, 129.7, 129.3, 127.5, 126.3, 125.8, 19.8, 19.6.

    (E)-1-Methoxy-3-(2-(phenylsulfonyl)vinyl)benzene (3k): 44.3 mg, yield 81%. Yellow solid, m.p. 116.3~117.8 ℃ (lit.[19] 120 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.95 (d, J=7.7 Hz, 2H), 7.68~7.60 (m, 2H), 7.56 (t, J=7.8 Hz, 2H), 7.31 (t, J=7.9 Hz, 1H), 7.08 (d, J=7.9 Hz, 1H), 7.00~6.94 (m, 2H), 6.85 (d, J=15.4 Hz, 1H), 3.81 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 160.0, 142.4, 140.6, 133.6, 133.4, 130.1, 129.3, 127.6, 121.24, 117.1, 113.4, 55.3.

    (E)-1, 2-Dimethyl-4-(2-tosylvinyl)benzene (3l): 52.6 mg, yield 92%. Yellow solid, m.p. 92.1~93.1 ℃; 1H NMR (500 MHz, CDCl3) δ: 7.82 (d, J=8.3 Hz, 2H), 7.60 (d, J=15.4 Hz, 1H), 7.33 (d, J=8.1 Hz, 2H), 7.25~7.19 (m, 2H), 7.14 (d, J=7.8 Hz, 1H), 6.78 (d, J=15.4 Hz, 1H), 2.43 (s, 3H), 2.26 (d, J=9.5 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ: 144.2, 142.2, 140.4, 138.0, 137.4, 130.3, 130.1, 129.9, 129.6, 127.6, 126.2, 21.6, 19.8, 19.7. HRMS calcd for C17H19O2S [M+H]+: 287.10977; found 287.11003.

    (E)-4-(2-((4-Bromophenyl)sulfonyl)vinyl)-1, 2-dimethyl-benzene (3m): 63.0 mg, yield 90%. Yellow solid, m.p. 103.2~105.6 ℃; 1H NMR (500 MHz, CDCl3) δ: 7.83~7.76 (m, 2H), 7.70~7.65 (m, 2H), 7.63 (d, J=15.4 Hz, 1H), 7.25 (s, 1H), 7.22 (d, J=7.8 Hz, 1H), 7.15 (d, J=7.8 Hz, 1H), 6.76 (d, J=15.4 Hz, 1H), 2.27 (d, J=9.7 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ: 143.4, 140.8, 140.1, 137.5, 132.5, 130.4, 129.8, 129.1, 128.4, 126.3, 125.3, 19.8, 19.6. HRMS calcd for C16H16O2BrS [M+H]+: 351.00464; found351.00489.

    (E)-4-(2-((2-Chlorophenyl)sulfonyl)vinyl)-1, 2-dimethyl-benzene (3n): 52.0 mg, yield 85%. Yellow solid, m.p. 115.2~117.6 ℃; 1H NMR (500 MHz, CDCl3) δ: 8.21 (d, J=7.8 Hz, 1H), 8.21 (d, J=7.8 Hz, 1H), 7.71 (d, J=15.3 Hz, 1H), 7.75~7.38 (m, 4H), 7.57~7.48 (m, 2H), 7.46 (t, J=7.4 Hz, 1H), 7.26 (d, J=18.1 Hz, 2H), 7.16 (d, J=7.7 Hz, 1H), 7.16 (d, J=7.7 Hz, 1H), 7.00 (d, J=15.3 Hz, 1H), 7.00 (d, J=15.3 Hz, 1H), 2.28 (d, J=7.3 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ: 145.6, 140.9, 138.5, 137.5, 134.3, 132.8, 131.8, 130.6, 130.4, 129.9, 127.4, 126.4, 123.7, 19.9, 19.7. HRMS calcd for C16H16O2ClS [M+H]+: 307.05511; found 307.05540.

    (E)-1-Chloro-2-((4-methylstyryl)sulfonyl)benzene (3o): 46.7 mg, yield 80%. White solid, m.p. 180.2~182.1 ℃(dec.); 1H NMR (500 MHz, CDCl3) δ: 8.22 (dd, J=7.8, 1.4 Hz, 1H), 7.74 (d, J=15.4 Hz, 1H), 7.56~7.49 (m, 2H), 7.48~7.44 (m, 1H), 7.41 (d, J=8.1 Hz, 2H), 7.21 (d, J=8.0 Hz, 2H), 7.02 (d, J=15.4 Hz, 1H), 2.38 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 145.3, 142.1, 138.5, 134.3, 132.8, 131.8, 130.6, 129.8, 129.6, 128.7, 127.4, 124.1, 21.5. HRMS calcd for C15H14O2ClS [M+H]+: 293.03946; found 293.03975.

    (E)-1-Methyl-4-((4-methylstyryl)sulfonyl)benzene (3p): 45.6 mg, yield 84%. Yellow solid, m.p. 148.9~150.2 ℃ (lit.[19] 152~155 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.82 (d, J=7.9 Hz, 2H), 7.62 (d, J=15.4 Hz, 1H), 7.35 (dd, J=15.3, 7.9 Hz, 4H), 7.19 (d, J=7.8 Hz, 2H), 6.79 (d, J=15.4 Hz, 1H), 2.40 (d, J=32.5 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ: 144.2, 142.0, 141.7, 137.9, 129.8, 128.5, 127.6, 126.4, 21.5.

    (E)-2-((4-Methylstyryl)sulfonyl)naphthalene (3q): 48.6 mg, yield 79%. Yellow solid, m.p. 167.6~168.3 ℃ (lit.[22] 172 ℃); 1H NMR (500 MHz, CDCl3) δ: 8.54 (s, 1H), 8.03~7.95 (m, 2H), 7.93~7.84 (m, 2H), 7.71 (d, J=15.4 Hz, 1H), 7.63 (dt, J=14.8, 6.9 Hz, 2H), 7.38 (d, J=8.0 Hz, 2H), 7.18 (d, J=7.9 Hz, 2H), 6.86 (d, J=15.4 Hz, 1H), 2.36 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 142.6, 141.9, 137.7, 135.1, 132.3, 129.8, 129.6, 129.4, 129.1, 128.6, 127.9, 127.6, 126.1, 122.6, 21.5.

    (E)-1-Chloro-2-((4-fluorostyryl)sulfonyl)benzene (3r): 50.9 mg, yield 86%. Yellow solid, m.p. 119.6~122.2 ℃; 1H NMR (500 MHz, CDCl3) δ: 8.22 (dd, J=7.9, 1.3 Hz, 1H), 7.73 (d, J=15.4 Hz, 1H), 7.53 (ddd, J=8.4, 6.2, 1.5 Hz, 4H), 7.49~7.45 (m, 1H), 7.10 (t, J=8.5 Hz, 2H), 7.02 (d, J=15.4 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ: 165.5, 163.5, 144.0, 138.1, 134.6, 132.8, 131.9, 130.8, 130.7, 130.7, 128.6, 128.6, 127.5, 125.0, 125.0, 116.5, 116.3. HRMS calcd for C14H11O2ClS [M+H]+: 297.01437; found 297.01468.

    (E)-1-Fluoro-4-(2-tosylvinyl)benzene (3s): 46.9 mg, yield 85%. Yellow solid, m.p. 90.2~91.6 ℃ (lit.[24] 84~85 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.82 (d, J=8.2 Hz, 2H), 7.62 (d, J=15.4 Hz, 1H), 7.47 (dd, J=8.6, 5.4 Hz, 2H), 7.35 (d, J=8.1 Hz, 2H), 7.08 (t, J=8.5 Hz, 2H), 6.78 (d, J=15.4 Hz, 1H), 2.44 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 165.3, 163.3, 144.5, 140.6, 137.6, 130.5, 130.0, 128.7, 127.7, 127.4, 116.4, 116.2, 21.6.

    (E)-2, 4-Dichloro-1-(2-((2-chlorophenyl)sulfonyl)vinyl)-benzene (3t): 55.3 mg, yield 80%. Yellow solid, m.p. 106.3~108.1 ℃; 1H NMR (500 MHz, CDCl3) δ: 8.23 (dd, J=7.9, 1.4 Hz, 1H), 8.11 (d, J=15.4 Hz, 1H), 7.58~7.52 (m, 2H), 7.52~7.46 (m, 3H), 7.28 (dd, J=8.5, 2.0 Hz, 1H), 7.09 (d, J=15.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 140.0, 137.8, 137.6, 136.1, 134.7, 132.9, 131.9, 130.9, 130.3, 129.4, 129.1, 128.6, 127.7, 127.5. HRMS calcd for C14H10O2Cl3S [M+H]+: 346.94592; found 346.94616.

    (E)-1-Chloro-4-(2-tosylvinyl)benzene (3u): 46.7 mg, yield 80%. Yellow solid, m.p. 132.6~133.7 ℃ (lit.[19] 139~142 ℃); 1H NMR (500 MHz, CDCl3) δ: 7.82 (d, J=8.3 Hz, 2H), 7.60 (d, J=15.4 Hz, 1H), 7.41 (d, J=8.6 Hz, 2H), 7.38~7.33 (m, 4H), 6.82 (d, J=15.4 Hz, 1H), 2.44 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 144.5, 140.4, 137.5, 137.1, 131.0, 130.0, 129.7, 129.4, 128.3, 127.8, 21.6.

    (E)-1-(2-(Phenylsulfonyl)vinyl)naphthalene (3v): 47.6 mg, yield 81%. Yellow solid, m.p. 98.2~99.5 ℃ (lit.[23] 99~101 ℃); 1H NMR (500 MHz, CDCl3) δ: 8.52 (d, J=15.2 Hz, 1H), 8.15 (d, J=8.4 Hz, 1H), 8.01 (d, J=7.5 Hz, 2H), 7.89 (dd, J=17.8, 8.1 Hz, 2H), 7.59 (ddt, J=25.6, 10.3, 7.3 Hz, 6H), 7.44 (t, J=7.7 Hz, 1H), 6.97 (d, J=15.2 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 140.7, 139.5, 133.7, 133.4, 131.5, 131.3, 129.6, 129.4, 128.9, 127.7, 127.3, 126.5, 125.7, 125.3, 123.0.

    (E)-1-(2-((2-Chlorophenyl)sulfonyl)vinyl)naphthalene (3w): 49.8 mg, yield 76%. Yellow solid, m.p. 136.2~138.9 ℃; 1H NMR (500 MHz, CDCl3) δ: 8.63 (d, J=15.2 Hz, 1H), 8.28 (dd, J=7.9, 1.5 Hz, 1H), 8.17 (d, J=8.4 Hz, 1H), 7.94 (d, J=8.2 Hz, 1H), 7.89 (d, J=7.9 Hz, 1H), 7.72 (d, J=7.2 Hz, 1H), 7.61 (ddd, J=8.4, 6.9, 1.3 Hz, 1H), 7.59~7.53 (m, 3H), 7.52~7.46 (m, 2H), 7.15 (d, J=15.2 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 142.6, 138.3, 134.6, 133.7, 132.9, 132.0, 131.7, 131.4, 130.9, 129.7, 128.9, 127.7, 127.5, 126.6, 125.9, 125.4, 123.1. HRMS calcd for C18H14O2ClS [M+H]+: 329.03958; found 329.03975.

    (E)-1-(2-Tosylvinyl)naphthalene (3x): 47.4 mg, yield 77%. Yellow solid, m.p. 101.1~102.8 ℃ (lit.[24]oil); 1H NMR (500 MHz, CDCl3) δ: 8.50 (d, J=15.2 Hz, 1H), 8.16 (d, J=8.4 Hz, 1H), 7.90 (dd, J=15.7, 8.2 Hz, 4H), 7.66 (d, J=7.2 Hz, 1H), 7.63~7.59 (m, 1H), 7.56 (dd, J=11.0, 3.9 Hz, 1H), 7.45 (t, J=7.7 Hz, 1H), 7.36 (d, J=8.1 Hz, 2H), 6.95 (d, J=15.2 Hz, 1H), 2.44 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 144.4, 139.0, 137.6, 133.6, 131.3, 130.0, 129.6, 128.8, 127.8, 127.3, 126.5, 125.6, 125.3, 123.0, 21.6.

    (E)-2-(2-(Phenylsulfonyl)vinyl)thiophene (3y): 39.5 mg, yield 79%. Yellow solid, m.p. 95.6~97.1 ℃ (lit.[19] 93~94 ℃); 1H NMR (500 MHz, CDCl3) δ: 8.01~7.91 (m, 2H), 7.80 (d, J=15.1 Hz, 1H), 7.55 (t, J=7.6 Hz, 2H), 7.44 (d, J=5.0 Hz, 1H), 7.32 (d, J=3.4 Hz, 1H), 7.07 (dd, J=5.0, 3.7 Hz, 1H), 6.65 (d, J=15.1 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 140.8, 136.9, 135.1, 133.3, 132.5, 130.0, 129.3, 128.3, 127.6, 125.4.

    (E)-2-(2-(Phenylsulfonyl)vinyl)furan (3z): 36.5 mg, yield 78%. Yellow solid, m.p. 105.8~106.6 ℃ (lit. oil[25]); 1H NMR (500 MHz, CDCl3) δ: 7.99~7.90 (m, 2H), 7.61 (d, J=7.4 Hz, 1H), 7.54 (t, J=7.6 Hz, 2H), 7.46 (dd, J=18.3, 8.2 Hz, 2H), 6.73 (dd, J=18.7, 9.2 Hz, 2H), 6.49 (dd, J=3.4, 1.8 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 148.7, 145.6, 140.8, 133.3, 129.3, 128.9, 127.5, 124.7, 116.9, 112.6.

    Supporting Information   Full experimental details and NMR spectra for compounds 3a~3z. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.


    1. [1]

      (a) Fung, E.; Chua, K.; Ganz, T.; Nemeth, E.; Ruchala, P. Bioorg. Med. Chem. Lett. 2015, 25, 763.
      (b) Lavecchia, A.; Di Giovanni, C.; Pesapane, A.; Montuori, N.; Ragno, P.; Martucci, N. M.; Masullo, M.; De Vendittis, E.; Novellino, E. J. Med. Chem. 2012, 55, 4142.
      (c) Nakao, Y.; Fusetani, N. J. Nat. Prod. 2007, 70, 689.
      (d) Goudou, F.; Petit, P.; Moriou, C.; Gros, O.; Al-Mourabit, A. J. Nat. Prod. 2017, 80, 1693.
      (e) Gordon, C. P.; Griffith, R.; Keller, P. A. Med. Chem. 2007, 3, 199.
      (f) Meadows, D. C.; Sanchez, T.; Neamati, N.; North, T. W.; Hague, J. G. Bioorg. Med. Chem. 2007, 15, 1127.

    2. [2]

      (a) Simpkins, N. S. Tetrahedron 1990, 46, 6951.
      (b) Chen, G.-Y.; Lu, Y. Synthesis 2013, 45, 1654.
      (c) Cheng, F.; Wang, H.; He, W.; Sun, B.; Zhao, J.; Qu, J.; Wang, Q. ACS Sustainable Chem. Eng. 2019, 7, 9112.

    3. [3]

      (a) Truce, W. E.; Goralski, C. T. J. Org. Chem. 1971, 36, 2536.
      (b) Posner, G. H.; Brunelle, D. J. J. Org. Chem. 1972, 37, 3547.
      (c) Hoogenboom, B. E.; ElFaghi, M. S.; Fink, S. C.; Ihrig, P. I.; Langsjoen, A. N.; Linn, C. J.; Maehling, K. L. J. Org. Chem. 1975, 40, 880.
      (d) Back, T. G.; Collins, S.; Krishna, M. V.; Law, K. W. J. Org. Chem. 1987, 52, 4258.
      (e) Kamigata, N.; Sawada, H.; Kobayashi, M. J. Org. Chem. 1983, 48, 3793.
      (f) Huang, X.; Duan, D.; Zheng, W. J. Org. Chem. 2003, 69, 1958.
      (g) Guan, Z. H.; Zuo, W.; Zhao, L. B.; Ren, Z. H.; Liang, Y. M. Synthesis 2007, 1465.
      (h) Ochiai, M.; Kitagawa, Y.; Toyonari, M.; Uemura, K.; Oshima, K.; Shiro, M. J. Org. Chem. 1997, 62, 8001.
      (i) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M.; Bernini, R. J. Org. Chem. 2004, 69, 5608.
      (j) Battace, A.; Zair, T.; Doucet, H.; Santelli, M. Synthesis 2006, 3495.
      (k) Bian, M.; Xu, F.; Ma, C. Synthesis 2007, 2951.
      (l) Truce, W.; Wolf, G. C. J. Org. Chem. 1971, 36, 1727.
      (m) Amiel, Y. J. Org. Chem. 1970, 36, 3691.
      (n) Peng, L.; Hu, Z.; Tang, Z.; Jiao, Y.; Xu, X. Chin. Chem. Lett. 2019, 30, 1481.
      (o) Keshari, T.; Kapoorr, R.; Yadav, L. D. S. Eur. J. Org. Chem. 2016, 2695.

    4. [4]

      (a) Nair, V.; Augustine, A.; George, T. G.; Nair, L. G. Tetrahedron Lett. 2001, 42, 6763.
      (b) Katrun, P.; Chiampanichayakul, S.; Korworapan, K.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Kuhakarn, C. Eur. J. Org. Chem. 2010, 2010, 5633.
      (c) Kamigata, N.; Sawada, H.; Kobayashi, M. J. Org. Chem. 1983, 48, 3793.
      (d) Taniguchi, N. Synlett 2011, 1308.
      (e) Nair, V.; Augustine, A.; Suja, T. D. Synthesis 2002, 2259.
      (f) Das, B.; Lingaiah, M.; Damodar, K.; Bhunia, N. Synthesis 2011, 2941.
      (g) Sawangphon, T.; Katrun, P.; Chaisiwamongkhol, K.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Soorukram, D.; Kuhakarn, C. Synth. Commun. 2013, 43, 1692.
      (h) Tang, S.; Wu, Y.; Liao, W.; Bai, R.; Liu, C.; Lei, A. Chem. Commun. 2014, 50, 4496.
      (i) Zhang, N.; Yang, D.; Wei, W.; Yuan, L.; Cao, Y.; Wang, H. RSC Adv. 2015, 5, 37013.
      (j) Luo, Y. C.; Pan, X. J.; Yuan, G. Q. Tetrahedron 2015, 71, 2119.
      (k) Xue, Q.; Mao, Z.; Shi, Y.; Mao, H.; Cheng, Y.; Zhu, C. Tetrahedron Lett. 2012, 53, 1851.
      (l) Chawla, R.; Kapoor, R.; Singh, A. K.; Yadav, L. D. S. Green Chem. 2012, 14, 1308.
      (m) Liang, S.; Zhang, R. Y.; Wang, G.; Chen, S. Y.; Yu, X. Q. Eur. J. Org. Chem. 2013, 2013, 7050.
      (n) Katrun, P.; Hlekhlai, S.; Meesin, J.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Soorukrama, D.; Kuhakarn, C. Org. Biomol. Chem. 2015, 13, 4785
      (o) Taniguchi, N. Tetrahedron 2014, 70, 1984.

    5. [5]

      Nie, G.; Deng, X. C.; Lei, X.; Hu, Q. Q.; Chen, Y. F. RSC Adv. 2016, 6, 75277. doi: 10.1039/C6RA17842A

    6. [6]

      Zhan, Z. Z.; Ma, H. J.; Wei, D. D.; Pu, J. H.; Zhang, Y. X.; Huang, G. S. Tetrahedron Lett. 2018, 59, 1446. doi: 10.1016/j.tetlet.2018.02.078

    7. [7]

      Zhao, Y.; Lai, Y. L.; Du, K. S.; Lin, D. Z.; Huang, J. M. J. Org. Chem. 2017, 82, 9655. doi: 10.1021/acs.joc.7b01741

    8. [8]

      Rong, G. W.; Mao, J. C.; Yan, H.; Zheng, Y.; Zhang, G. Q. J. Org. Chem. 2015, 80, 4697. doi: 10.1021/acs.joc.5b00558

    9. [9]

      Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77. doi: 10.1126/science.1161976

    10. [10]

      (a) Chen, Y. Y.; Lu, L. Q.; Yu, D. G.; Zhu, C. J.; Xiao, W. J. Sci. China Chem. 2019, 62, 24-57.
      (b) Luo, K.; Yang, W. C.; Wu, L. Asian J. Org. Chem. 2017, 6, 350.
      (c) Huang, C.; Li, X. B.; Tung, C. H.; Wu, L. Z. Chem.-Eur. J. 2018, 24, 11530.
      (d) Chen, Y.; Zhao, H.; Cheng, D.; Li X.; Xu X. Chin. J. Org. Chem. 2020, 40, 1297(in Chinese).
      (陈跃峰, 赵赫, 程冬萍, 李小年, 许孝良, 有机化学, 2020, 40, 1297.)
      (e) Capaldo, L.; Ravelli, D. Eur. J. Org. Chem. 2017, 2056.
      (f) Chen, J. R.; Yan, D. M.; Wei, Q.; Xiao, W. J. ChemPhotoChem 2017, 1, 148.
      (g) Peng, S.; Lin, Y.; He, W. Chin. J. Org. Chem. 2020, 40, 541(in Chinese).
      (彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.)
      (h) Chen, L.; Liang, J.; Chen, Z. Y.; Chen, J.; Yan, M.; Zhang, X. J. Adv. Synth. Catal. 2019, 361, 956.
      (i) Dong, D. Q.; Li, L. X.; Li, G. H.; Deng, Q.; Wang, Z. L.; Long, S. Chin. J. Catal. 2019, 40, 1494.
      (j) Kong, Y.; Xu, W.; Ye, F.; Weng, J. Chin. J. Org. Chem. 2019, 39, 3065(in Chinese).
      (孔瑶蕾, 徐雯秀, 叶飞霞, 翁建全, 有机化学, 2019, 39, 3065.)
      (k) Xiao, L.; Li, J.; Wang, T. Acta Chim. Sinica 2019, 77, 841.
      (l) Chen, Y.; Chang, L.; Zuo, Z. Acta Chim. Sinica 2019, 77, 794.
      (m) Yuan, Y.; Dong, W. H.; Gao, X. S.; Xie, X. M.; Curran, D. P.; Zhang, Z. G. Chin. J. Chem. 2018, 36, 1035.
      (o) Wang, D. H.; Zhang, L.; Luo, S. Z. Chin. J. Chem. 2018, 36, 311.

    11. [11]

      (a) Zhu, J.; Yang, W. C.; Wang, X. D.; Wu, L. Adv. Synth. Catal. 2018, 360, 386.
      (b) Li, Y.; Miao, T.; Li, P. H.; Wang, L. Org. Lett. 2018, 20, 1735.
      (c) Xie, L. Y.; Fang, T. G.; Tan, J. X.; Zhang, B.; Cao, Z.; Yang, L. H.; He, W. M. Green Chem. 2019, 21, 3858.
      (d) Dong, D. Q.; Hao, S. H.; Yang, D. S.; Li, L. X.; Wang, Z. L. Eur. J. Org. Chem. 2017, 2017, 6576.
      (e) Li, G.; Gan, Z.; Kong, K.; Dou, X.; Yang, D. Adv. Synth. Catal. 2019, 361, 1808.
      (f) Qiu, G. Y. S.; Li, Y. W.; Wu, J. Org. Chem. Front. 2016, 3, 1011.
      (g) Lima, C. G. S.; Lima, T. D. M.; Duarte, M.; Jurberg, I. D.; Paixão, M. W. ACS Catal. 2016, 6, 1389.
      (h) Duan, K.; Yan, X. F.; Liu, Y. J.; Li, Z. D. Adv. Synth. Catal. 2018, 360, 2781.
      (i) Xie, L. Y.; Chen, Y. L.; Qin, L.; Wen, Y.; Xie, J. W.; Tan, J. X.; Huang, Y.; Cao, Z.; He, W. M. Org. Chem. Front. 2019, 6, 3950.

    12. [12]

      Guo, W.; Tao, K. L.; Tan, W.; Zhao, M. M.; Zheng, L. Y.; Fan, X. L. Org. Chem. Front. 2019, 6, 2048. doi: 10.1039/C8QO01353E

    13. [13]

      Zhu, X. J.; Xie, X. Y.; Li, P. H.; Guo, J. Q.; Wang, L. Org. Lett. 2016, 18, 1546. doi: 10.1021/acs.orglett.6b00304

    14. [14]

      Yang, D.; Huang, B.; Wei, W.; Li, J.; Lin, G.; Liu, Y.; Ding, J.; Sun, P.; Wang, H. Green Chem. 2016, 18, 5630. doi: 10.1039/C6GC01403H

    15. [15]

      Meyer, A. U.; Jäger, S.; Hari, D. P.; König, B. Adv. Synth. Catal. 2015, 357, 2050. doi: 10.1002/adsc.201500142

    16. [16]

      Liu, X.; Cong, T.; Liu, P.; Sun, P. Org. Biomol. Chem. 2016, 14, 9416. doi: 10.1039/C6OB01569G

    17. [17]

      (a) Cai, S.; Xu, Y.; Chen, D.; Li, L.; Chen, Q.; Huang, M.; Weng, W. Org. Lett. 2016, 18, 2990.
      (b) Dong, D. Q.; Chen, D. M.; Sun, Y. Y.; Han, Q. Q.; Wang, Z. L.; Xu, X. M.; Yu, X. Y. Chin. J. Org. Chem. 2020, 40, 1766(in Chinese).
      (董道青, 李光辉, 陈德茂, 孙媛媛, 韩晴晴, 王祖利, 徐鑫明, 于贤勇, 有机化学, 2020, 40, 1766.)
      (c) Yan, S.; Dong, D. Q.; Xie, C.; Wang, W.; Wang, Z. L. Chin. J. Org. Chem. 2019, 39, 2560.
      (d) Li, G. H.; Han, Q. Q.; Sun, Y. Y.; Chen, D. M.; Wang, Z. L.; Xu, X. M.; Yu, X. Y. Chin. Chem. Lett., 2020, 31, 3255.
      (e) Li, G. H.; Dong, D. Q.; Deng, Q.; Yan, S. Q.; Wang, Z. L. Synthesis 2019, 51, 3313.
      (f) Dong, D. Q.; Chen, W. J.; Yang, Y.; Gao, X.; Wang, Z. L. ChemistrySelect 2019, 4, 2480.
      (g) Li, G. H.; Dong, D. Q.; Yu, X. Y.; Wang, Z. L. New J. Chem. 2019, 43, 1667.
      (h) Li, G. H.; Dong, D. Q.; Yang, Y.; Yu, X. Y.; Wang, Z. L. Adv. Synth. Catal. 2019, 361, 832.
      (i) Dong, D.; Sun, Y.; Li, G.; Yang, H.; Wang, Z.; Xu, X. Chin. J. Org. Chem. 2020, 40, 4071(in Chinese).
      (董道青, 孙媛媛, 李光辉, 杨欢, 王祖利, 徐鑫明, 有机化学, 2020, 40, 4071.)
      (j) Han, Q. Q.; Li, G. H.; Sun, Y. Y.; Chen, D. M.; Wang, Z. L.; Yu, X. Y.; Xu, X. M. Tetrahedron Lett. 2020, 61, 151704.
      (k) Dong, D. Q.; Yang, H.; Shi, J. L.; Si, W. J.; Wang, Z. L.; Xu, X. M. Org. Chem. Front. 2020, 7, 2538.

    18. [18]

      Hong, G. F.; Yuan, J. W.; Dong, Z. H.; Xiao, Y. M.; Mao, P.; Qu, L. B., Phosphorus Sulfur 2018, 193, 771. doi: 10.1080/10426507.2018.1513518

    19. [19]

      Gui, Q. W.; Han, K.; Liu, Z. L.; Su, Z. H.; He, X. L.; Jiang, H. M.; Tian, B. F.; Li, Y. Y. Org. Biomol. Chem. 2018, 16, 5748. doi: 10.1039/C8OB01502C

    20. [20]

      Baliah, V.; Seshapathirao, M. J. Org. Chem. 1959, 24, 867. doi: 10.1021/jo01088a610

    21. [21]

      Chen, H.; Wedi, P.; Meyer, T.; Tavakoli, G.; van Gemmeren, M. Angew. Chem., Int. Ed. 2018, 57, 2497. doi: 10.1002/anie.201712235

    22. [22]

      Hu, D. Q.; Bai, F. C.; Liu, Y. Y.; Wan, J. P. Chin. J. Chem. 2016, 34, 1053. doi: 10.1002/cjoc.201600337

    23. [23]

      Chen, J.; Mao, J. C.; Zheng, Y.; Liu, D. F.; Rong, G. W.; Yan, H.; Zhang, C.; Shi, D. Q. Tetrahedron 2015, 71, 5059. doi: 10.1016/j.tet.2015.05.115

    24. [24]

      Mao, S.; Gao, Y. R.; Zhu, X. Q.; Guo, D. D.; Wang, Y. Q. Org. Lett. 2015, 17, 1692. doi: 10.1021/acs.orglett.5b00461

    25. [25]

      Aegurla, B.; Peddinti, R. K. Asian J. Org. Chem. 2018, 7, 946. doi: 10.1002/ajoc.201700696

  • Scheme 1  Synthesis of vinyl sulfones

    Scheme 2  Control experiment

    Figure 1  On/off experiments

    Scheme 3  Reaction mechanism

    Table 1.  Optimization of the reaction conditionsa

    Entry Catalyst Solvent Additive Yieldb/%
    1 NHPI MeCN 59
    2 NHPI DCE 43
    3 NHPI Acetone 66
    4 NHPI DCM 37
    5 NHPI o-DCB 80
    6 o-DCB 81
    7 o-DCB DBU Trace
    8 o-DCB TEA 8
    9 o-DCB K2CO3 Trace
    10 o-DCB DMAP Trace
    11c o-DCB 88
    12d o-DCB 38
    13e o-DCB 45
    14f o-DCB Trace
    a Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), catalyst (10 mol%), solvent (1 mL), additive (0.4 mmol) under nitrogen atmosphere at room temperature using white LED (8 W) for 12 h. b Isolated yield. c Using green LEDs (8 W). d Using purple LEDs (8 W). e Using blue LEDs (8 W). f In the dark.
    下载: 导出CSV

    Table 2.  Reaction Scopeabrrhzimage:30:erhhz

    a Reaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), o-DCB (1 mL), under a nitrogen atmosphere at room temperature using green LEDs (8 W).
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  5
  • 文章访问数:  504
  • HTML全文浏览量:  61
文章相关
  • 发布日期:  2020-12-25
  • 收稿日期:  2020-06-15
  • 修回日期:  2020-07-29
  • 网络出版日期:  2020-08-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章