Citation: Han Man-Yi, Pan Hong, Yao Ziyun, Li Qi. n-Bu4NBr Catalyzed Brook Rearrangement/Alkylation Reaction[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4274-4283. doi: 10.6023/cjoc202005093 shu

n-Bu4NBr Catalyzed Brook Rearrangement/Alkylation Reaction

  • Corresponding author: Han Man-Yi, hanmy10@126.com
  • Received Date: 31 May 2020
    Revised Date: 11 July 2020
    Available Online: 5 August 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21602073), the Natural Science Foundation of Anhui Province (No. 1708085QB39) and the Young Scholars in Wanjiang Scholars Program of Anhui Provincethe Natural Science Foundation of Anhui Province 1708085QB39the National Natural Science Foundation of China 21602073

Figures(4)

  • A novel Brook rearrangement/alkylation reaction sequence of tertiary α-silyl alcohols has been developed using n-Bu4NBr as the phase transfer catalyst (PTC). A number of tertiary α-silyl alcohols are applicable to the reaction, affording the products with a quaternary carbon center in high yields (up to 71%). Moreover, the carbanions generated after the Brook rearrangement could be stabilized by the electron-withdrawing group, depressing the Brook rearrangement/protonation reaction.
  • 加载中
    1. [1]

      Brook, A. G. J. Am. Chem. Soc. 1958, 80, 1886.  doi: 10.1021/ja01541a026

    2. [2]

      For selected reviews, see: (a) Lee, N.; Tan, C.-H. Asian J. Org. Chem. 2019, 8, 25.
      (b) Yabushita, K.; Yuasa, A.; Nagao, K.; Ohmiya, H. J. Am. Chem. Soc. 2019, 141, 113.
      (c) Eppe, G.; Didier, D.; Marek, I. Chem. Rev. 2015, 115, 9175.
      (d) Zhang, H. -J.; Priebbenow, D. L.; Bolm, C. Chem. Soc. Rev. 2013, 42, 8540.
      (e) Boyce, G. R.; Greszler, S. N.; Johnson, J. S.; Linghu, X.; Malinowski, J. T.; Nicewicz, D. A.; Satterfield, A. D.; Schmitt, D. C.; Steward, K. M. J. Org. Chem. 2012, 77, 4503.
      (f) Smith, Ⅲ, A. B., Wuest, W. M. Chem. Commun. 2008, 45, 5883.
      (g) Moser, W. H. Tetrahedron 2001, 57, 2065.
      (h) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A. J. Organomet. Chem. 1998, 567, 181.
      (i) Bulman-Page, P. C.; Klair, S. S.; Rosenthal, S. Chem. Soc. Rev. 1990, 19, 147.
      (j) Brook, A. G. Acc. Chem. Res. 1974, 7, 77.

    3. [3]

      Greszler, S. N.; Johnson, J. S. Org. Lett. 2009, 11, 827.  doi: 10.1021/ol802828d

    4. [4]

      Greszler, S. N.; Johnson, J. S. Angew. Chem., Int. Ed. 2009, 48, 3689.  doi: 10.1002/anie.200900215

    5. [5]

      For selected examples, see: (a) Yao, M.; Lu, C.-D. Org. Lett. 2011, 13, 2782.
      (b) Han, X.-J.; Yao, M.; Lu, C.-D. Org. Lett. 2012, 14, 2906.

    6. [6]

      Luzzio, F. A. Tetrahedron 2001, 57, 915.  doi: 10.1016/S0040-4020(00)00965-0

    7. [7]

      For selected reviews and examples, see: (a) Adero, P. O.; Amarasekara, H.; Wen. P.; Bohé L.; Crich, D. Chem. Rev. 2018, 118, 8242.
      (b) Hamlin, T. A.; Swart, M. F.; Bickelhaupt, M. ChemPhysChem 2018, 19, 1315.
      (c) Fu, G. C. ACS Cent. Sci. 2017, 3, 692.
      (d) Phan, T. B.; Nolte, C.; Kobayashi, S.; Ofial, A. R.; Mayr, H. J. Am. Chem. Soc. 2009, 131, 11392.
      (e) Marshall, J. A. Chem. Rev. 1989, 89, 1503.

    8. [8]

      Kato, M.; Mori, A.; Oshino, H.; Enda, J.; Kobayashi, K.; Kuwajima, I. J. Am. Chem. Soc. 1984, 106, 1773.  doi: 10.1021/ja00318a036

    9. [9]

      Collados, J. F.; Ortiz, P.; Perez, J. M.; Xia, Y.; Koenis, M. A. J.; Buma, W. J.; Nicu, V. P.; Harutyunyan, S. R. Eur. J. Org. Chem. 2018, 2018, 3900.

    10. [10]

      For selected reviews and examples, see: (a) Collados, J. F.; Ortiz, P.; Harutyunyan, S. R. Eur. J. Org. Chem. 2016, 3065.
      (b) Leibeling, M.; Shurrush, K. A.; Werner, V.; Perrin, L.; Marek, I. Angew. Chem., Int. Ed. 2016, 55, 6057.

    11. [11]

      For selected reviews and examples, see: (a) Zong, L.; Tan, C.-H. Acc. Chem. Res. 2017, 50, 842.
      (b) Albanese, D. C. M.; Foschi, F.; Penso, M. Org. Process Res. Dev. 2016, 20, 129.
      (c) Kaneko, S.; Kumatabara, Y.; Shirakawa, S. Org. Biomol. Chem. 2016, 14, 5367.
      (d) Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 4312.
      (e) Takeda, K.; Ohnishi, Y. Tetrahedron Lett. 2000, 41, 4169.
      (f) Ando, M.; Sasaki, M.; Miyashita, I.; Takeda, K. J. Org. Chem. 2015, 80, 247.

    12. [12]

      For selected examples, see: (a) Han, M.-Y.; Pan, H.; Li, P.; Wang, L. J. Org. Chem. 2020, 85, 5825.
      (b) Pan, H.; Han, M.-Y.; Li, P.; Wang, L. J. Org. Chem. 2019, 84, 14281.
      (c) Han, M.-Y.; Luan, W.-Y.; Mai, P.-L.; Li, P.; Wang, L. J. Org. Chem. 2018, 83, 1518.
      (d) Han, M.-Y.; Lin, J.; Li, W.; Luan, W.-Y.; Mai, P.-L.; Zhang, Y. Green Chem. 2018, 20, 1228.
      (e) Han, M.-Y.; Pan, H.; Lin, J.; Li, W.; Li, P.; Wang, L. Org. Biomol. Chem. 2018, 16, 4117.
      (f) Han, M.-Y.; Xie, X.; Zhou, D.; Li, P.; Wang, L. Org. Lett. 2017, 19, 2282.
      (g) Han, M.-Y.; Yang, F.-Y.; Zhou, D.; Xu, Z. Org. Biomol. Chem. 2017, 15, 1418.

    13. [13]

      For selected examples, see: (a) Deng, Y.; Liu, Q.; Smith, Ⅲ, A. B. J. Am. Chem. Soc. 2017, 139, 9487.
      (b) Zhang, F.-G.; Marek, I. J. Am. Chem. Soc. 2017, 139, 8364.
      (c) Zhang, H.; Ma, S.; Yuan, Z.; Chen, P.; Xie, X.; Wang, X.; She, X. Org. Lett. 2017, 19, 3478.
      (d) Lin, C.-Y.; Sun, Z.; Xu, Y.-J.; Lu, C.-D. J. Org. Chem. 2015, 80, 3714.
      (e) Liu, B.; Lu, C. D. J. Org. Chem. 2011, 76, 4205.
      (f) Smith, Ⅲ, A. B.; Xian, M.; Kim, W.-S.; Kim, D.-S. J. Am. Chem. Soc. 2006, 128, 12368.
      (g) Jung, M. E.; Nichols, C. J. J. Org. Chem. 1996, 61, 9065.

  • 加载中
    1. [1]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    2. [2]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    3. [3]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    4. [4]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    5. [5]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    6. [6]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    7. [7]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    8. [8]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    9. [9]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    10. [10]

      Jieshuai XiaoYuan ZhengYue ZhaoZhuangzhi ShiMinyan Wang . Asymmetric Nozaki-Hiyama-Kishi (NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis. Chinese Chemical Letters, 2025, 36(5): 110243-. doi: 10.1016/j.cclet.2024.110243

    11. [11]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    12. [12]

      Zhao GuYunhui YangSong YeCongyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334

    13. [13]

      Xiaoyu ZhaoKai GaoSen XueWei RanRui Liu . Synergistic effects of oxygen vacancies and Pd single atoms on Pd@TiO2−x for efficient HER catalysis. Chinese Chemical Letters, 2025, 36(6): 110309-. doi: 10.1016/j.cclet.2024.110309

    14. [14]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    15. [15]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    16. [16]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    17. [17]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    18. [18]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

    19. [19]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    20. [20]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

Metrics
  • PDF Downloads(41)
  • Abstract views(4121)
  • HTML views(499)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return