Citation: Zhang Huifang, Qiu Zaozao, Xie Zuowei. Recent Advances in Transition Metal-Promoted Multicomponent Cascade Reactions for Controlled Synthesis of Complex Carborane Derivatives[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3203-3213. doi: 10.6023/cjoc202005079 shu

Recent Advances in Transition Metal-Promoted Multicomponent Cascade Reactions for Controlled Synthesis of Complex Carborane Derivatives

  • Corresponding author: Qiu Zaozao, qiuzz@sioc.ac.cn Xie Zuowei, zxie@cuhk.edu.hk
  • Received Date: 28 May 2020
    Revised Date: 15 June 2020
    Available Online: 19 June 2020

    Fund Project: Chinese Academy of Sciences, and the Hong Kong Research Grants Council 14306519National Natural Science Foundation of China 21772223Project supported by the National Natural Science Foundation of China (No. 21772223), the Science and Technology Commission of Shanghai Municipality (No. 18590760800), the Chinese Academy of Sciences, and the Hong Kong Research Grants Council (No. 14306519)Science and Technology Commission of Shanghai Municipality 18590760800

Figures(22)

  • Carboranes are a class of carbon-boron molecular clusters with exceptional thermal and chemical stabilities. They are finding a variety of applications in medicine, materials, and coordination/organometallic chemistry as functional building blocks. To this end, the selective functionalization of carboranes has received growing research interests. Transition metal-promoted multicomponent cascade reactions are particularly attractive since they have the advantages of step- and atom- economy for the construction of complex products from readily available starting materials by simple operations. The recent advances in transition metal-promoted multicomponent cascade reactions for selective functionalization of carboranes are summarized in this focus review. The related reaction mechanisms and challenges in this research area are also discussed.
  • 加载中
    1. [1]

      (a) Grimes, R. N. Carboranes, 3rd ed., Academic Press, Amsterdam, 2016.
      (b) Hosmane, N. S. Boron Science: New Technologies and Application, CRC Press, Boca Raton, FL, 2012.

    2. [2]

      (a) Scholz, M.; Hey-Hawkins, E. Chem. Rev. 2011, 111, 7035.
      (b) Leśnikowski, Z. J. J. Med. Chem. 2016, 59, 7738.

    3. [3]

      (a) Hosmane, N. S.; Maguire, J. A. In Comprehensive Organometallic Chemistry Ⅲ, Vol. 3, Eds.: Crabtree, R. H.; Mingos, D. M. P., Elsevier, Oxford, 2007, Chapter 5.
      (b) Xie, Z. Acc. Chem. Res. 2003, 36, 1.
      (c) Yao, Z.-J.; Jin, G.-X. Coord. Chem. Rev. 2013, 257, 2522.
      (d) Qiu, Z.; Ren, S.; Xie, Z. Acc. Chem. Res. 2011, 44, 299.
      (e) Estrada, J.; Lavallo, V. Angew. Chem. Int. Ed. 2017, 56, 9906.
      (f) El-Hellani, A.; Lavallo, V. Angew. Chem. Int. Ed. 2014, 53, 4489.
      (g) Fisher, S. P.; Tomich, A. W.; Lovera, S. O.; Kleinsasser, J. F.; Guo, J.; Asay, M. J.; Nelson, H. M.; Lavallo, V. Chem. Rev. 2019, 119, 8262.
      (h) Yao, Z.-J.; Yu, W.-B.; Lin, Y.-J.; Huang, S.-L.; Li, Z.-H.; Jin, G.-X. J. Am. Chem. Soc. 2014, 136, 2825.
      (i) Gao, Y.; Guo, S.-T.; Cui, P.-F.; Aznarez, F.; Jin, G.-X. Chem. Commun. 2019, 55, 210.
      (j) Cui, P.-F.; Gao, Y.; Guo, S.-T.; Lin, Y.-J.; Li, Z.-H.; Jin, G.-X. Angew. Chem. Int. Ed. 2019, 58, 8129.

    4. [4]

      (a) Jude, H.; Disteldorf, H.; Fischer, S.; Wedge, T.; Hawkridge, A. M.; Arif, A. M.; Hawthorne, M. F.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2005, 127, 12131.
      (b) Koshino, M.; Tanaka, T.; Solin, N.; Suenaga, K.; Isobe, H.; Nakamura, E. Science 2007, 316, 853.
      (c) Dash, B. P.; Satapathy, R.; Gaillard, E. R.; Maguire, J. A.; Hosmane, N. S. J. Am. Chem. Soc. 2010, 132, 6578.
      (d) Kung, C.-W.; Otake, K.; Buru, C. T.; Goswami, S.; Cui, Y.; Hupp, J. T.; Spokoyny, A. M.; Farha, O. K. J. Am. Chem. Soc. 2018, 140, 3871.
      (e) Villagómez, C. J.; Sasaki, T.; Tour, J. M.; Grill, L. J. Am. Chem. Soc. 2010, 132, 16848.
      (f) Qian, E. Q.; Wixtrom, A. I.; Axtell, J. C.; Saebi, A.; Rehak, P.; Han, Y.; Moully, E. H.; Mosallaei, D.; Chow, S.; Messina, M.; Wang, J.-Y.; Royappa, A. T.; Rheingold, A. L.; Maynard, H. D.; Kral, P.; Spokoyny, A. M. Nat. Chem. 2017, 9, 333.
      (g) Saha, A.; Oleshkevich, E.; Viñas, C.; Teixidor, F. Adv. Mater. 2017, 29, 1704238.
      (h) Guo, J.; Liu, D.; Zhang, J.; Zhang, J.; Miao, Q.; Xie, Z. Chem. Commun. 2015, 51, 12004.
      (i) Jung, D.; Saleh, L. M. A.; Berkson, Z. J.; El-Kady, M. F.; Hwang, J. Y.; Mohamed, N.; Wixtrom, A. I.; Titarenko, E.; Shao, Y.; McCarthy, K.; Guo, J.; Martini, I. B.; Kraemer, S.; Wegener, E. C.; Saint-Cricq, P.; Ruehle, B.; Langeslay, R. R.; Delferro, M.; Brosmer, J. L.; Hendon, C. H.; Gallagher-Jones, M.; Rodriguez, J.; Chapman, K. W.; Miller, J. T.; Duan, X.; Kaner, R. B.; Zink, J. I.; Chmelka, B. F.; Spokoyny, A. M. Nat. Mater. 2018, 17, 341.
      (j) Cui, P.-F.; Lin, Y.-J.; Li, Z.-H.; Jin, G.-X. J. Am. Chem. Soc. 2020, 142, 8532.

    5. [5]

      (a) Mukherjee, S.; Thilagar, P. Chem. Commun. 2016, 52, 1070.
      (b) Núñez, R.; Tarrés, M.; Ferrer-Ugalde, A.; de Biani, F. F.; Teixidor, F. Chem. Rev. 2016, 116, 14307.
      (c) Li, X.; Yan, H.; Zhao, Q. Chem. Eur. J. 2016, 22, 1888.

    6. [6]

      (a) Heying, T. L.; Ager, J. W.; Clark, S. L.; Mangold, D. J.; Goldstein, H. L.; Hillman, M.; Polak, R. J.; Szymanski, J. W. Inorg. Chem. 1963, 2, 1089.
      (b) Fein, M. M.; Bobinski, J.; Mayes, N.; Schwartz, N.; Cohen, M. S. Inorg. Chem. 1963, 2, 1111.
      (c) El-Zaria, M. E., Keskar, K., Genady, A. R., Ioppolo, J. A., McNulty, J.; Valliant, J. F. Angew. Chem. Int. Ed. 2014, 53, 5156.

    7. [7]

      (a) Wu, S.; Jones, M., Jr. Inorg. Chem. 1986, 25, 4802.
      (b) Bregadze, V. I. Chem. Rev. 1992, 92, 209.
      (c) Viñas, C.; Benakki, R.; Teixidor, F.; Casabó, J. Inorg. Chem. 1995, 34, 3844.
      (d) Gomez, F. A.; Johnson, S. E.; Hawthorne, M. F. J. Am. Chem. Soc. 1991, 111, 5915.
      (e) Gomez, F. A.; Hawthorne, M. F. J. Org. Chem. 1992, 57, 1384.
      (f) Anderson, K. P.; Mills, H. A.; Mao, C.; Kirlikovali, K. O.; Axtell, J. C.; Rheingold, A. L.; Spokoyny, A. M. Tetrahedron 2019, 75, 187.

    8. [8]

      (a) Lu, J.-Y.; Wan, H.; Zhang, J.; Wang, Z.; Li, Y.; Du, Y.; Li, C.; Liu, Z.-T.; Liu, Z.-W.; Lu, J. Chem.-Eur. J. 2016, 22, 17542.
      (b) Tang, C.; Xie, Z. Angew. Chem. Int. Ed. 2015, 54, 7662.
      (c) Xie, Z. Sci. China Chem. 2014, 57, 1061.
      (d) Coult, R.; Fox, M. A.; Gill, W. R.; Herbertson, P. L.; MacBride, J. A. H.; Wade, K. J. Organomet. Chem. 1993, 462, 19.

    9. [9]

      (a) Tang, C.; Zhang, J.; Xie, Z. Angew. Chem. Int. Ed. 2017, 56, 8642.
      (b) Tang, C.; Zhang, J.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2018, 140, 16423.

    10. [10]

      Lyu, H.; Zhang, J.; Yang, J.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2019, 141, 4219.
      (b) Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2015, 137, 3502.
      (c) Quan, Y.; Xie, Z. Angew. Chem. Int. Ed. 2016, 55, 1295.
      (d) Zhang, X.; Yan, H. Chem. Sci. 2018, 9, 3964.
      (e) Zhang, X.; Zheng, H.; Li, J.; Xu, F.; Zhao, J.; Yan, H. J. Am. Chem. Soc. 2017, 139, 14511.
      (f) Cao, K.; Huang, Y.; Yang, J.; Wu, J. Chem. Commun. 2015, 51, 7257.
      (g) Lin, F.; Yu, J.-L.; Shen, Y.; Zhang, S.-Q.; Spingler, B.; Liu, J.; Hong, X.; Duttwyler, S. J. Am. Chem. Soc. 2018, 140, 13798.
      (h) Xu, T. T.; Cao, K.; Zhang, C. Y.; Wu, J.; Ding, L. F.; Yang, J. Org. Lett. 2019, 21, 9276.
      (i) Xu, T. T.; Cao, K.; Zhang, C. Y.; Wu, J.; Jiang, L.; Yang, J. Chem. Commun. 2018, 54, 13603.

    11. [11]

      (a) Liang, X.; Shen, Y.; Zhang, K.; Liu, J.; Duttwyler, S. Chem. Commun. 2018, 54, 12451.
      (b) Lin, F.; Shen, Y.; Zhang, Y.; Sun, Y.; Liu, J.; Duttwyler, S. Chem. Eur. J. 2018, 24, 551.
      (c) Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem. Int. Ed. 2015, 54, 10623.
      (d) Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 15513.
      (e) Mirabelli, M. G. L.; Sneddon, L. G. J. Am. Chem. Soc. 1988, 110, 449.
      (f) Wu, J.; Cao, K.; Xu, T.-T.; Zhang, X.-J.; Jiang, L.; Yang, J.; Huang, Y., RSC Adv. 2015, 5, 91683.
      (g) Shen, Y.; Pan, Y.; Zhang, K.; Liang, X.; Liu, J.; Spingler, B.; Duttwyler, S. Dalton Trans. 2017, 46, 3135.
      (h) Shen, Y.; Zhang, K.; Liang, X.; Dontha, R.; Duttwyler, S. Chem. Sci. 2019, 10, 4177.
      (i) Cheng, R.; Qiu, Z.; Xie, Z. Chem. Eur. J. 2020, 26, 7121.

    12. [12]

      (a) Chen, Y.; Au, Y. K.; Quan, Y.; Xie, Z. Sci. China Chem. 2019, 62, 74.
      (b) Quan, Y.; Tang, C.; Xie, Z. Chem. Sci. 2016, 7, 5838.

    13. [13]

      Cheng, R.; Qiu, Z.; Xie, Z. Nat. Commun. 2017, 8, 14827.  doi: 10.1038/ncomms14827

    14. [14]

      Qiu, Z.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2013, 135, 12192.  doi: 10.1021/ja405808t

    15. [15]

      (a) Cui, C. X.; Zhang, J.; Qiu, Z.; Xie, Z. Dalton Trans. 2020, 49, 1380.
      (b) Au, Y. K.; Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2020, 142, 6940.
      (c) Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem. Int. Ed. 2016, 55, 11840.
      (d) Cao, K.; Xu, T.-T.; Wu, J.; Jiang, L.; Yang, J. Chem. Commun. 2016, 52, 11446.
      (e) Li, C.-X.; Zhang, H.-Y.; Wong, T.-Y.; Cao, H.-J.; Yan, H.; Lu, C.-S. Org. Lett. 2017, 19, 5178.

    16. [16]

      Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2016, 138, 12727.  doi: 10.1021/jacs.6b07086

    17. [17]

      Lyu, H.; Quan, Y.; Xie, Z. Chem. Eur. J. 2017, 23, 14866.  doi: 10.1002/chem.201703006

    18. [18]

      (a) Quan, Y.; Qiu, Z.; Xie, Z. Chem. Eur. J. 2018, 24, 2795.
      (b) Quan, Y.; Xie, Z. Chem. Soc. Rev. 2019, 48, 3660.
      (c) Yu, W.-B.; Cui, P.-F.; Gao, W.-X.; Jin, G.-X. Coord. Chem. Rev. 2017, 350, 300.
      (d) Zhang, X.; Yan, H. Coord. Chem. Rev. 2019, 378, 466.

    19. [19]

      Qiu, Z.; Ren, S.; Xie, Z. Acc. Chem. Res. 2011, 44, 299.  doi: 10.1021/ar100156f

    20. [20]

      Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2009, 131, 2084.  doi: 10.1021/ja809389k

    21. [21]

      Deng, L.; Chan, H.-S.; Xie, Z. J. Am. Chem. Soc. 2006, 128, 7728.  doi: 10.1021/ja061605j

    22. [22]

      Ren, S.; Chan, H.-S.; Xie, Z. Organometallics 2009, 28, 4106.  doi: 10.1021/om9002973

    23. [23]

      Ren, S.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2012, 134, 3242.  doi: 10.1021/ja211485t

    24. [24]

      Ren, S.; Chan, H.-S.; Xie, Z. J. Am. Chem. Soc. 2009, 131, 3862.  doi: 10.1021/ja900563u

    25. [25]

      Ren, S.; Qiu, Z.; Xie, Z. Organometallics 2012, 31, 4435.  doi: 10.1021/om300202p

    26. [26]

      Ren, S.; Qiu, Z.; Xie, Z. Angew. Chem. Int. Ed. 2012, 51, 1010.  doi: 10.1002/anie.201106212

    27. [27]

      Quan, Y.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2013, 135, 18742.  doi: 10.1021/ja410233e

    28. [28]

      Zhang, J.; Quan, Y.; Lin, Z.; Xie, Z. Organometallics 2014, 33, 3556.  doi: 10.1021/om5004545

    29. [29]

      Cui, C.-X.; Ren, S.; Qiu, Z.; Xie, Z. Dalton Trans. 2018, 47, 2453.  doi: 10.1039/C7DT04751G

    30. [30]

      Quan, Y.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 7599.  doi: 10.1021/ja503489b

    31. [31]

      Wang, Z.; Ye, H.; Li, Y.; Li, Y.; Yan, H. J. Am. Chem. Soc. 2013, 135, 11289.  doi: 10.1021/ja4047075

    32. [32]

      Zhang, R.; Zhu, L.; Liu, G.; Dai, H.; Lu, Z.; Zhao, J.; Yan, H. J. Am. Chem. Soc. 2012, 134, 10341.  doi: 10.1021/ja303334t

    33. [33]

      Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2010, 132, 16085.  doi: 10.1021/ja1058789

    34. [34]

      Lyu, H. Quan, Y.; Xie, Z. Chem. Sci. 2018, 9, 6390.

    35. [35]

      Au, Y.-K.; Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2019, 141, 12855.  doi: 10.1021/jacs.9b06204

    36. [36]

      Au, Y.-K.; Lyu, H.; Quan, Y.; Xie, Z. Chin. J. Chem. 2020, 38, 383.  doi: 10.1002/cjoc.201900475

    37. [37]

      (a) Li, J.; Logan, C. F.; Jones, M. Jr. Inorg. Chem. 1991, 30, 4866.
      (b) Zheng, Z.; Jiang, W.; Zinn, A. A.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 1995, 34, 2095.
      (c) Harakas, G.; Vu, T.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1998, 120, 6405.
      (d) Viñas, C.; Barberà, G.; Oliva, J. M.; Teixidor, F.; Welch, A. J.; Rosair, G. M. Inorg. Chem. 2001, 40, 6555.

    38. [38]

      Ge, Y.; Zhang, J.; Qiu, Z.; Xie, Z. Angew. Chem. Int. Ed. 2020, 59, 4851.  doi: 10.1002/anie.201914500

    39. [39]

      (a) Poater, J.; Solà, M.; Viñas, C.; Teixidor, F. Chem. Eur. J. 2016, 22, 7437.
      (b) Axtell, J. C.; Saleh, L. M. A.; Qian, E. A.; Wixtrom, A. I.; Spokoyny, A. M. Inorg. Chem. 2018, 57, 2333.
      (c) Bolli, C.; Derendorf, J.; Keßler, M.; Knapp, C.; Scherer, H.; Schulz, C.; Warneke, J. Angew. Chem. Int. Ed. 2010, 49, 3536.
      (d) Kirchmann, M.; Wesemann, L. Dalton Trans. 2008, 2144.
      (e) Messina, M. S.; Axtell, J. C.; Wang, Y.; Chong, P.; Wixtrom, A. I.; Kirlikovali, K. O.; Upton, B. M.; Hunter, B. M.; Shafaat, O. S.; Khan, S. I.; Winkler, J. R.; Gray, H. B.; Alexandrova, A. N.; Maynard, H. D.; Spokoyny, A. M. J. Am. Chem. Soc. 2016, 138, 6952.
      (f) Peryshkov, D. V.; Strauss, S. H. Inorg. Chem. 2017, 56, 4072.
      (g) Wang, W.; Wang, X.; Cao, J.; Liu, J.; Qi, B.; Zhou, X.; Zhang, S.; Gabel, D.; Nau, W. M.; Assaf, K. I.; Zhang, H. Chem. Commun. 2018, 54, 2098.
      (h) Assaf, K. I.; Ural, M. S.; Pan, F.; Georgiev, T.; Simova, S.; Rissanen, K.; Gabel, D.; Nau, W. M. Angew. Chem. Int. Ed. 2015, 54, 6852.
      (i) Assaf, K. I.; Hennig, A.; Peng, S.; Guo, D.-S.; Gabel, D.; Nau, W. M. Chem. Commun. 2017, 53, 4616.
      (j) Jung, D.; Saleh, L. M. A.; Berkson, Z. J.; El-Kady, M. F.; Hwang, J. Y.; Mohamed, N.; Wixtrom, A. I.; Titarenko, E.; Shao, Y.; McCarthy, K.; Guo, J.; Martini, I. B.; Kraemer, S.; Wegener, E. C.; Saint-Cricq, P.; Ruehle, B.; Langeslay, R. R.; Delferro, M.; Brosmer, J. L.; Hendon, C. H.; Gallagher-Jones, M.; Rodriguez, J.; Chapman, K. W.; Miller, J. T.; Duan, X.; Kaner, R. B.; Zink, J. I.; Chmelka, B. F.; Spokoyny, A. M. Nat. Mater. 2018, 17, 341.

    40. [40]

      Zhang, Y.; Sun, Y.; Lin, F.; Liu, J.; Duttwyler, S. Angew. Chem. Int. Ed. 2016, 55, 15609.  doi: 10.1002/anie.201607867

    41. [41]

      Zhang, Y.; Wang, T.; Wang, L.; Sun, Y.; Lin, F.; Liu, J.; Duttwyler, S. Chem. Eur. J. 2018, 24, 15812.  doi: 10.1002/chem.201803455

    42. [42]

      Cheng, R.; Li, B.; Wu, J.; Zhang, J.; Qiu, Z.; Tang, W.; You, S. L.; Tang, Y.; Xie, Z. J. Am. Chem. Soc. 2018, 140, 4508.  doi: 10.1021/jacs.8b01754

  • 加载中
    1. [1]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    2. [2]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    5. [5]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    6. [6]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    7. [7]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    8. [8]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    9. [9]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    10. [10]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    11. [11]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    12. [12]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    13. [13]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    14. [14]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    20. [20]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

Metrics
  • PDF Downloads(8)
  • Abstract views(1664)
  • HTML views(247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return