Citation: Huang Yuanting, Chen Qian. Recent Progress in P- and S-Arylation Reactions of Arynes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4087-4100. doi: 10.6023/cjoc202005047 shu

Recent Progress in P- and S-Arylation Reactions of Arynes

  • Corresponding author: Chen Qian, qianchen@gdut.edu.cn
  • Received Date: 18 May 2020
    Revised Date: 21 June 2020
    Available Online: 15 July 2020

    Fund Project: the Basic and Applied Basic Research Foundation of Guangdong Province 2019B1515120035the 100 Young Talents Programme of Guangdong University of Technology 220413506the Science and Technology Planning Project of Guangdong Province 2017A010103044Project supported by the Science and Technology Planning Project of Guangdong Province (No. 2017A010103044), the 100 Young Talents Programme of Guangdong University of Technology (No. 220413506) and the Basic and Applied Basic Research Foundation of Guangdong Province (No. 2019B1515120035)

Figures(31)

  • Arylphosphine and aryl sulfur compounds have been widely used in organic synthesis, functional materials and pharmaceutical chemistry. Thus, the development of green, mild and highly efficient methodologies for P- and S-arylation is of great importance. Recently, the reactions involving arynes provided a novel approach to the arylation of organophosphorus and organosulfur compounds. These reactions can be performed in the absence of transition metal catalysts under mild conditions with broad scope. The recent progress in P- and S-arylation reactions with arynes is introduced on the basis of different reaction types.
  • 加载中
    1. [1]

      (a) Demmer, C. S.; Krogsgaard-Larsen, N.; Bunch, L. Chem. Rev. 2011, 111, 7981.
      (b) Montchamp, J.-L. Acc. Chem. Res. 2014, 47, 77.
      (c) Zhang, J.; Ding, D.; Wei, Y.; Xu, H. Chem. Sci. 2016, 7, 2870.
      (d) Joachimiak, Ł.; Błażewska, K. M. J. Med. Chem. 2018, 61, 8536.

    2. [2]

    3. [3]

      (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
      (b) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.

    4. [4]

      (a) Rueeger, H.; Lueoend, R.; Rogel, O.; Rondeau, J.-M.; Möbitz, H.; Machauer, R.; Jacobson, L.; Staufenbiel, M.; Desrayaud, S.; Neumann, U. J. Med. Chem. 2012, 55, 3364.
      (b)Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832.

    5. [5]

    6. [6]

    7. [7]

      (a) Wenk, H. H.; Winkler, M.; Sander, W. Angew. Chem., Int. Ed. 2003, 42, 502.
      (b) Okuma, K. Heterocycles 2012, 85, 515.
      (c) Bhojgude, S. S.; Biju, A. T. Angew. Chem., Int. Ed. 2012, 51, 1520.
      (d) Wu, C.; Shi, F. Asian J. Org. Chem. 2013, 2, 116.
      (e) Modha, S. G.; Mehta, V. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 5042.

    8. [8]

      Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 12, 1211.

    9. [9]

      Matsuzawa, T.; Yoshida, S.; Hosoya, T. Tetrahedron Lett. 2018, 59, 4197.

    10. [10]

      (a) Chen, L.; Zhang, C.; Wen, C.; Zhang, K.; Liu, W.; Chen, Q. Catal. Commun. 2015, 65, 81.
      (b) Chen, Q.; Zhang, C.; Chen, L.; Wen, C.; Du, Z.; Chen, H.; Zhang, K. Tetrahedron Lett. 2015, 56, 2094.
      (c) Wen, C.; Chen, Q.; He, Z.; Yan, X.; Zhang, C.; Du, Z.; Zhang, K. Tetrahedron Lett. 2015, 56, 5470.
      (d) Chen, Q.; Yan, X.; Du, Z.; Zhang, K.; Wen, C. J. Org. Chem. 2016, 81, 276.
      (e) Chen, Q.; Yan, X.; Wen, C.; Zeng, J.; Huang, Y.; Liu, X.; Zhang, K. J. Org. Chem. 2016, 81, 9476.

    11. [11]

      Rémond, E.; Tessier, A.; Leroux, F. R.; Bayardon, J.; Jugé, S. Org. Lett. 2010, 12, 1568.

    12. [12]

      Yoshida, S.; Uchida, K.; Igawa, K.; Tomooka, K.; Hosoya, T. Chem. Commun. 2014, 50, 15059.

    13. [13]

      Dhokale, R. A.; Mhaske, S. B. Org. Lett. 2013, 15, 2218.

    14. [14]

      Arbuzov, B. A. Pure Appl. Chem. 1964, 9, 307.

    15. [15]

      Yoshida, S.; Hosoya, T. Chem. Lett. 2013, 42, 583.

    16. [16]

      Yang, G.; Shen, C.; Quan, M.; Zhang, W. Tetrahedron 2016, 72, 333.

    17. [17]

      Yoshida, H.; Watanabe, M.; Ohshita, J.; Kunai, A. Chem. Lett. 2005, 34, 1538.

    18. [18]

      Alajarin, M.; Lopez-Leonardo, C.; Raja, R.; Orenes, R. Org. Lett. 2011, 13, 5668.

    19. [19]

      Lopez-Leonardo, C.; Raja, R.; López-Ortiz, F.; del Águila-Sánchez, M. Á.; Alajarin, M. Eur. J. Org. Chem. 2014, 1084.

    20. [20]

      Shen, C.; Yang, G.; Zhang, W. Org. Lett. 2013, 15, 5722.

    21. [21]

      Qi, N.; Zhang, N.; Allu, S. R.; Gao, J.; Guo, J.; He, Y. Org. Lett. 2016, 18, 6204.

    22. [22]

      Neog, K.; Dutta, D.; Das, B.; Gogoi, P. Org. Biomol. Chem. 2019, 17, 6450.

    23. [23]

      Okugawa, Y.; Hayashi, Y.; Kawauchi, S.; Hirano, K.; Miura, M. Org. Lett. 2018, 20, 3670.

    24. [24]

      Bhunia, A.; Kaicharla, T.; Porwal, D.; Gonnade, R. G.; Biju, A. T. Chem. Commun. 2014, 50, 11389.

    25. [25]

      Bhunia, A.; Roy, T.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2014, 16, 5132.

    26. [26]

      Fujimoto, H.; Kusano, M.; Kodama, T.; Tobisu, M. Org. Lett. 2020, 22, 2293.

    27. [27]

      Liu, Z.; Larock, R. C. J. Org. Chem. 2006, 71, 3198.

    28. [28]

      Yoshida, S.; Nagai, A.; Uchida, K.; Hosoya, T. Chem. Lett. 2017, 46, 733.

    29. [29]

      Pandya, V. G.; Mhaske, S. B. Org. Lett. 2014, 16, 3836.

    30. [30]

      Aithagani, S. K.; Yempalla, K. R.; Munagala, G.; Vishwakarma, R. A.; Singh, P. P. RSC Adv. 2014, 4, 50208.

    31. [31]

      Sumii, Y.; Sugita, Y.; Tokunaga, E.; Shibata, N. ChemistryOpen 2018, 7, 204.

    32. [32]

      Zhang, L.; Li, X.; Sun, Y.; Zhao, W.; Luo, F.; Huang, X.; Lin, L.; Yang, Y.; Peng, B. Org. Biomol. Chem. 2017, 15, 7181.

    33. [33]

      Sun, C.-H.; Lu, Y.; Zhang, Q.; Lu, R.; Bao, L.-Q.; Shen, M.-H.; Xu, H.-D. Org. Biomol. Chem. 2017, 15, 4058.

    34. [34]

      Xu, X.-B.; Lin, Z.-H.; Liu, Y.; Guo, J.; He, Y. Org. Biomol. Chem. 2017, 15, 2716.

    35. [35]

      Thangaraj, M.; Gaykar, R. N.; Roy, T.; Biju, A. T. J. Org. Chem. 2017, 82, 4470.

    36. [36]

      Tan, J.; Zheng, T.; Xu, K.; Liu, C. Org. Biomol. Chem. 2017, 15, 4946.

    37. [37]

      Zheng, T.; Tan, J.; Fan, R.; Su, S.; Liu, B.; Tan, C.; Xu, K. Chem. Commun. 2018, 54, 1303.

    38. [38]

      Fan, R.; Liu, B.; Zheng, T.; Xu, K.; Tan, C.; Zeng, T.; Su, S.; Tan, J. Chem. Commun. 2018, 54, 7081.

    39. [39]

      Jian, H.; Wang, Q.; Wang, W.-H.; Li, Z.-J.; Gu, C.-Z.; Dai, B.; He, L. Tetrahedron 2018, 74, 2876.

    40. [40]

      Chen, J.; Palani, V.; Hoye, T. R. J. Am. Chem. Soc. 2016, 138, 4318.

    41. [41]

      Singh, P.; Cairns, A. G.; Adolfsson, D. E.; Ådén, J.; Sauer, U. H.; Almqvist, F. Org. Lett. 2019, 21, 6946.

    42. [42]

      Biswas, K. Greaney, M. F. Org. Lett. 2011, 13, 4946.

    43. [43]

      Pawliczek, M.; Garve, L. K. B.; Werz, D. B. Org. Lett. 2015, 17, 1716.

    44. [44]

      Li, Y.; Mük-Lichtenfeld, C.; Studer, A. Angew. Chem., Int. Ed. 2016, 55, 14435.

    45. [45]

      Zhao, X.; Huang, Y.; Qing, F.-L.; Xu, X.-H. RSC Adv. 2017, 7, 47.

    46. [46]

      Ahire, M. M.; Thoke, M. B.; Mhaske, S. B. Org. Lett. 2018, 20, 848.

    47. [47]

      Li, Z.; Jian, H.; Wang, W.; Wang, Q.; He, L. Chin. J. Org. Chem. 2018, 38, 2045(in Chinese).
       

    48. [48]

      Liu, Z.; Larock, R. C. J. Am. Chem. Soc. 2005, 127, 13112.

    49. [49]

      Qiu, D.; He, J.; Yue, X.; Shi, J.; Li, Y. Org. Lett. 2016, 18, 3130.

    50. [50]

      Gaykar, R. N.; Bhattacharjee, S.; Biju, A. T. Org. Lett. 2019, 21, 737.

    51. [51]

      Yoshida, S.; Yano, T.; Misawa, Y.; Sugimura, Y.; Igawa, K.; Shimizu, S.; Tomooka, K.; Hosoya, T. J. Am. Chem. Soc. 2015, 137, 14071.

    52. [52]

      Matsuzawa, T.; Uchida, K.; Yoshida, S.; Hosoya, T. Chem. Lett. 2018, 47, 825.

    53. [53]

      Yoshida, S.; Nakajima, H.; Uchida, K.; Yano, T.; Kondo, M.; Matsushita, T.; Hosoya, T. Chem. Lett. 2017, 46, 77.

    54. [54]

      (a) Li, H.-Y.; Xing, L.-J.; Lou, M.-M.; Wang, H.; Liu, R.-H.; Wang, B. Org. Lett. 2015, 17, 1098.
      (b) Lou, M.-M.; Wang, H.; Song, L.; Liu, H.-Y.; Li, Z.-Q.; Guo, X.-S.; Zhang, F.-G.; Wang, B. J. Org. Chem. 2016, 81, 5915.

    55. [55]

      Li, Y.; Studer, A. Org. Lett. 2017, 19, 666.

    56. [56]

      Li, X.; Sun, Y.; Huang, X.; Zhang, L.; Kong, L.; Peng, B. Org. Lett. 2017, 19, 838.

    57. [57]

      Matsuzawa, T.; Uchida, K.; Yoshida, S.; Hosoya, T. Org. Lett. 2017, 19, 5521.

    58. [58]

      Toledo, F. T.; Marques, H.; Comasseto, J. V.; Raminelli, C. Tetrahedron Lett. 2007, 48, 8125.

    59. [59]

      Mesgar, M.; Daugulis, O. Org. Lett. 2017, 19, 4247.

    60. [60]

      Yoshida, H.; Terayama, T.; Ohshita, J.; Kunai, A. Chem. Commun. 2004, 1980.

    61. [61]

      Chen, J.; Murafuji, T. Organometallics 2011, 30, 4532.

    62. [62]

      Liu, F.-L.; Chen, J.-R.; Zou, Y.-Q.; Wei, Q.; Xiao, W.-J. Org. Lett. 2014, 16, 3768.

    63. [63]

      Hazarika, H.; Neog, K.; Sharma, A.; Das, B.; Gogoi, P. J. Org. Chem. 2019, 84, 5846.

    64. [64]

      Li, Y.; Qiu, D.; Gu, R.; Wang, J.; Shi, J.; Li, Y. J. Am. Chem. Soc. 2016, 138, 10814.

    65. [65]

      Lin, W.; Sapountzis, I.; Knochel, P. Angew. Chem., Int. Ed. 2005, 44, 4258.

    66. [66]

      García-López, J.-A.; Çetin, M.; Greaney, M. F. Angew. Chem., Int. Ed. 2015, 54, 2156.

    67. [67]

      Zeng, Y.; Hu, J. Org. Lett. 2016, 18, 856.

    68. [68]

      Peng, X.; Ma, C.; Tung, C.-H.; Xu, Z. Org. Lett. 2016, 18, 4154.

    69. [69]

      Kwon, J.; Kim, B. M. Org. Lett. 2019, 21, 428.

    70. [70]

      Gaykar, R. N.; Guin, A.; Bhattacharjee, S.; Biju, A. T. Org. Lett. 2019, 21, 9613.

    71. [71]

      Zhao, J.; Larock, R. C. J. Org. Chem. 2007, 72, 583.

    72. [72]

      Hall, C.; Henderson, J. L.; Ernouf, G.; Greaney, M. F. Chem. Commun. 2013, 49, 7602.

    73. [73]

      Shi, J.; Qiu, D.; Wang, J.; Xu, H.; Li, Y. J. Am. Chem. Soc. 2015, 137, 5670.

    74. [74]

      Palani, V.; Chen, J.; Hoye, T. R. Org. Lett. 2016, 18, 6312.

    75. [75]

      Chen, Y.; Willis, M. C. Org. Lett. 2015, 17, 4786.

    76. [76]

      Pawliczek, M.; Garve, L. K. B.; Werz, D. B. Chem. Commun. 2015, 51, 9165.

    77. [77]

      Garg, P.; Singh, A. Org. Lett. 2018, 20, 1320.

    78. [78]

      Ding, W.; Yu, A.; Zhang, L.; Meng, X. Org. Lett. 2019, 21, 9014.

  • 加载中
    1. [1]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    2. [2]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    6. [6]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    9. [9]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    10. [10]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    13. [13]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    14. [14]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    15. [15]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    16. [16]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(134)
  • Abstract views(5353)
  • HTML views(1158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return