Citation: Wang Cai, Zhou Feng, Zhou Jian. Recent Advances in the Enantioselective Copper(Ⅰ)-Catalyzed Azide-Alkyne Cycloaddition Reaction[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3065-3077. doi: 10.6023/cjoc202005020 shu

Recent Advances in the Enantioselective Copper(Ⅰ)-Catalyzed Azide-Alkyne Cycloaddition Reaction

  • Corresponding author: Zhou Feng, fzhou@chem.ecnu.edu.cn Zhou Jian, jzhou@chem.ecnu.edu.cn
  • Received Date: 9 May 2020
    Revised Date: 28 May 2020
    Available Online: 8 June 2020

    Fund Project: the National Natural Science Foundation of China 21871090the National Natural Science Foundation of China 21672068Project supported by the National Natural Science Foundation of China (Nos. 21672068, 21871090)

Figures(17)

  • As one of the most important click reactions, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) has found widespread applications. Nevertheless, the exploitation of enantioselective CuAAC remains largely undeveloped. Although the reaction itself does not generate chiral elements, the enantioselective CuAAC can be realized via the desymmetrization of prochiral dialkynes or diazides, as well as the kinetic resolution of racemic azides or terminal alkynes. Notably, enantioselective CuAAC provides efficient access to structurally diverse enantioenriched compounds featuring an azide, terminal alkyne or 1, 4-disubstituted 1, 2, 3-triazoles, which are valuable structural units in organic synthesis or medicinal chemistry. Since the first highly enantioselective CuAAC reaction via desymmetrization of prochiral diynes was reported in 2013, substantial progress has been made in this research area. To date, enantioselective CuAAC has been successfully applied to the construction of central chirality, axial chirality and planar chirality. The recent exciting achievements are summarized, the challenges in this context are briefly discussed, and the synthetic opportunities for future development are outlined.
  • 加载中
    1. [1]

      Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 565.  doi: 10.1002/anie.196305651

    2. [2]

      (a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057.
      (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.

    3. [3]

      Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.  doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

    4. [4]

      (a) Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952.
      (b) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302.

    5. [5]

      (a) Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210.
      (b) Worrell, B. T.; Malik, J. A.; Fokin, V. V. Science 2013, 340, 457.

    6. [6]

      Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2003, 8, 1128.  doi: 10.1016/S1359-6446(03)02933-7

    7. [7]

      (a) Trost, B. M.; Weiss, A. H. Adv. Synth. Catal. 2009, 351, 963.
      (b) Ding, P. G.; Hu, X. S.; Zhou, F.; Zhou, J. Org. Chem. Front. 2018, 5, 1542.

    8. [8]

      Meng, J.-C.; Fokin, V. V.; Finn, M. G. Tetrahedron Lett. 2005, 46, 4543.  doi: 10.1016/j.tetlet.2005.05.019

    9. [9]

      Rodionov, V. O.; Fokin, V. V.; Finn, M. G. Angew. Chem., Int. Ed. 2005, 44, 2210.  doi: 10.1002/anie.200461496

    10. [10]

      Zhou, F.; Tan, C.; Tang, J.; Zhang, Y. Y.; Gao, W. M.; Wu, H. H.; Yu, Y. H.; Zhou, J. J. Am. Chem. Soc. 2013, 135, 10994.  doi: 10.1021/ja4066656

    11. [11]

      Brittain, W. D. G.; Buckley, B. R.; Fossey, J. S. ACS Catal. 2016, 6, 3629.  doi: 10.1021/acscatal.6b00996

    12. [12]

      Cahn, R. S.; Ingold, C.; Prelog, V. Angew. Chem., Int. Ed. 1966, 5, 385.  doi: 10.1002/anie.196603851

    13. [13]

      Zeng, X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330.  doi: 10.1021/acs.chemrev.6b00094

    14. [14]

      Cao, Z.-Y.; Zhou, F.; Zhou, J. Acc. Chem. Res. 2018, 51, 1443.  doi: 10.1021/acs.accounts.8b00097

    15. [15]

      (a) Wilking, M.; Mück-Lichtenfeld, C.; Daniliuc, C. G.; Hennecke, U. J. Am. Chem. Soc. 2013, 135, 8133.
      (b) Mourad, A. K.; Leutzow, J.; Czekelius, C. Angew. Chem., Int. Ed. 2012, 51, 11149.
      (c) Sato, Y.; Nishimata, T.; Mori, M. J. Org. Chem. 1994, 59, 6133.
      (d) Tanaka, K.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 10296.

    16. [16]

      Stephenson, G. R.; Buttress, J. P.; Deschamps, D.; Lancelot, M.; Martin, J. P.; Sheldon, A. I. G.; Alayrac, C.; Gaumont, A.-C.; Page, P. C. B. Synlett 2013, 24, 2723.  doi: 10.1055/s-0033-1340152

    17. [17]

      Song, T.; Li, L.; Zhou, W.; Zheng, Z.-J.; Deng, Y.; Xu, Z.; Xu, L.-W. Chem.-Eur. J. 2015, 21, 554.  doi: 10.1002/chem.201405420

    18. [18]

      Chen, M.-Y.; Song, T.; Zheng, Z.-J.; Xu, Z.; Cui, Y.-M.; Xu, L.-W. RSC Adv. 2016, 6, 58698.  doi: 10.1039/C6RA13687G

    19. [19]

      Chen, M.-Y.; Xu, Z.; Chen, L.; Song, T.; Zhen, Z.-J.; Cao, J.; Cui, Y.-M.; Xu, L.-W. ChemCatChem 2018, 10, 280.  doi: 10.1002/cctc.201701336

    20. [20]

    21. [21]

      (a) Harvey, J. S.; Gouverneur, V. Chem. Commun. 2010, 46, 7477.
      (b) Glueck, D. S. Chem.-Eur. J. 2008, 14, 7108.
      (c) Glueck, D. S. Synlett 2007, 2627.

    22. [22]

      Zhu, R.-Y.; Chen, L.; Hu, X.-S.; Zhou, F.; Zhou, J. Chem. Sci. 2020, 11, 97.  doi: 10.1039/C9SC04938J

    23. [23]

      (a) Xi, W.; Scott, T. F.; Kloxin, C. J.; Bowman, C. N. Adv. Funct. Mater. 2014, 24, 2572.
      (b) Chu, C.; Liu, R. Chem. Soc. Rev. 2011, 40, 2177.
      (c) Golas, P. L.; Matyjaszewski, K. Chem. Soc. Rev. 2010, 39, 1338.

    24. [24]

      Wang, C.; Zhu, R.-Y.; Liao, K.; Zhou, F.; Zhou, J. Org. Lett. 2020, 22, 1270.  doi: 10.1021/acs.orglett.9b04522

    25. [25]

      (a) Wang, Y.-B.; Tan, B. Acc. Chem. Res. 2018, 51, 534.
      (b) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. 2009, 38, 3193.
      (c) Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem., Int. Ed. 2005, 44, 5384.
      (d) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563.

    26. [26]

      Osako, T.; Uozumi, Y. Org. Lett. 2014, 16, 5866.  doi: 10.1021/ol502778j

    27. [27]

      Osako, T.; Uozumi, Y. Synlett 2015, 26, 1475.  doi: 10.1055/s-0034-1380534

    28. [28]

      (a) Yasue, R.; Kazuhiro, Y. Chem.-Eur. J. 2018, 24, 18575.
      (b) Ferbera, B.; Kagan, H. B. Adv. Synth. Catal. 2007, 349, 493.
      (c) Dai, L.-X.; Tu, T.; You, S.-L.; Deng, W.-P.; Hou, X.-L. Acc. Chem. Res. 2003, 36, 659.

    29. [29]

      Wright, A. J.; Hughes, D. L.; Page, P. C. B.; Stephenson, G. R. Eur. J. Org. Chem. 2019, 7218.

    30. [30]

      (a) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974.
      (b) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth. Catal. 2001, 343, 5.

    31. [31]

      Brittain, W. D. G.; Buckley, B. R.; Fossey, J. S. Chem. Commun. 2015, 51, 17217.  doi: 10.1039/C5CC04886A

    32. [32]

      Brittain, W. D. G.; Chapin, B. M.; Zhai, W.; Lynch, V. M.; Buckley, B. R.; Anslyn, E. V.; Fossey, J. S. Org. Biomol. Chem. 2016, 14, 10778.  doi: 10.1039/C6OB01623E

    33. [33]

      Brittain, W. D. G.; Dalling, A. G.; Sun, Z.; Duf, C. S. L.; Male, L.; Buckley, B. R.; Fossey, J. S. Sci. Rep. 2019, 9, 15086.  doi: 10.1038/s41598-019-50940-4

    34. [34]

      Alexander, J. R.; Ott, A. A.; Liu, E.-C.; Topczewski, J. J. Org. Lett. 2019, 21, 4355.  doi: 10.1021/acs.orglett.9b01556

    35. [35]

      (a) Bhat, V.; Welin, E. R.; Guo, X.; Stoltz, B. M. Chem. Rev. 2017, 117, 4528.
      (b) Pellissier, H. Tetrahedron 2008, 64, 3769.
      (c) Huerta, F. F.; Minidis, A. B. E.; Bäckvall, J.-E. Chem. Soc. Rev. 2001, 30, 321.

    36. [36]

      Liu, E.-C.; Topczewski, J. J. J. Am. Chem. Soc. 2019, 141, 5135.  doi: 10.1021/jacs.9b01091

  • 加载中
    1. [1]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    2. [2]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    12. [12]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    17. [17]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    18. [18]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    19. [19]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    20. [20]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

Metrics
  • PDF Downloads(107)
  • Abstract views(4720)
  • HTML views(1546)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return