Citation: Yuan Kangning, Zhao Yuying, Chang Honghong, Tian Jun, Gao Wenchao. Recent Advances in AlCl3-Promoted Organic Reactions[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2607-2625. doi: 10.6023/cjoc202004042 shu

Recent Advances in AlCl3-Promoted Organic Reactions

  • Corresponding author: Gao Wenchao, gaowenchao@tyut.edu.cn
  • Received Date: 26 April 2020
    Revised Date: 16 May 2020
    Available Online: 29 May 2020

    Fund Project: the Natural Science Foundation of Shanxi Province 201901D211052the Research Project Supported by Shanxi Scholarship Council of China 2020-053the Research Project Supported by Shanxi Scholarship Council of China HGKY2019029Project supported by the National Natural Science Foundation of China (No. 21901179), the Key Research and Development Program of Shanxi Province (International Cooperation) (No. 201803D421093), the Natural Science Foundation of Shanxi Province (No. 201901D211052) and the Research Project Supported by Shanxi Scholarship Council of China (Nos. HGKY2019029, 2020-053)the National Natural Science Foundation of China 21901179the Key Research and Development Program of Shanxi Province (International Cooperation) 201803D421093

Figures(36)

  • As a representative hard Lewis acid, aluminum trichloride (AlCl3) has attracted more and more attention in the past decades. The reactions promoted via the activation of halogens, oxygen, nitrogen, sulfur compounds and π-bonds with AlCl3 are systematically reviewed, and some recent progress in last ten years is updated as well. Moreover, the new application fields of AlCl3 are prospected.
  • 加载中
    1. [1]

      Chen, Z.; Qiu, X. L.; Yan, W.; Yang, H. N.; Ji, S. C.; Chen, M. H. Adv. Earth Sci. 2003, 18, 545 (in Chinese).

    2. [2]

      Ashkenazi, D. Technol. Forecast. Soc. Change 2019, 143, 101.  doi: 10.1016/j.techfore.2019.03.011

    3. [3]

      (a) Curtiss, L. A. Int. J. Quantum Chem. 1978, 14, 709.
      (b) Bigelow, M. J. J. Chem. Educ. 1969, 46, 495.
      (c) Aarset, K.; Shen, Q.; Thomassen, H.; Richardson, A. D.; Hedberg, K. J. Phys. Chem. A 1999, 103, 1644.

    4. [4]

      Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.  doi: 10.1021/ja00905a001

    5. [5]

      Yamamoto, Y. J. Org. Chem. 2007, 72, 7817.  doi: 10.1021/jo070579k

    6. [6]

      Zhao, Y.; Yang, Z.; Tang, L. Chin. J. Org. Chem. 2003, 23, 1219 (in Chinese).
       

    7. [7]

      Kürti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis, Elsevier Academic Press, San Diego, CA, 2005.

    8. [8]

      Chong, H. S.; Chen, Y. W. Org. Lett. 2013, 15, 5912.  doi: 10.1021/ol4013537

    9. [9]

      Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771.  doi: 10.1021/cr00013a002

    10. [10]

      Swaminathan, S.; Narayanan, K. V. Chem. Rev. 1971, 71, 429.  doi: 10.1021/cr60273a001

    11. [11]

      Beak, P.; Berger, K. R. J. Am. Chem. Soc. 1980, 102, 3848.  doi: 10.1021/ja00531a029

    12. [12]

      Shono, T.; Nishiguchi, I.; Sasaki, M.; Ikeda, H.; Kurita, M. J. Org. Chem. 1983, 48, 2503.  doi: 10.1021/jo00163a015

    13. [13]

      Hoffmann, H. M. R.; Tsushima, T. J. Am. Chem. Soc. 1977, 99, 6008.  doi: 10.1021/ja00460a028

    14. [14]

      Tanaka, S.; Kunisawa, T.; Yoshii, Y.; Hattori, T. Org. Lett. 2019, 21, 8509.  doi: 10.1021/acs.orglett.9b02688

    15. [15]

      Koo, H.; Kim, H. Y.; Oh, K. Org. Chem. Front. 2019, 6, 1868.  doi: 10.1039/C9QO00217K

    16. [16]

      Xu, S. B.; Li, C. J.; Jia, X. S.; Li, J. J. Org. Chem. 2014, 79, 11161.  doi: 10.1021/jo502209f

    17. [17]

      Devi, N. S.; Singh, S. J.; Devi, L. R.; Singh, O. M. Tetrahedron Lett. 2013, 54, 183.  doi: 10.1016/j.tetlet.2012.10.126

    18. [18]

      Chen, L.; Teng, W.; Geng, X. L.; Zhu, Y. F.; Guan, Y. H.; Fan, X. H. Appl. Organomet. Chem. 2017, 31, 3863.  doi: 10.1002/aoc.3863

    19. [19]

      Xu, X. M.; Lei, C. H.; Tong, S.; Zhu, J. P.; Wang, M. X. Org. Chem. Front. 2018, 5, 3138.  doi: 10.1039/C8QO00839F

    20. [20]

      Aleksić, M.; Bertoša, B.; Nhili, R.; Uzelac, L.; Jarak, I.; Depauw, S.; David-Cordonnier, M. H.; Kralj, M.; Tomić, S.; Karminski-Zamola, G. J. Med. Chem. 2012, 55, 5044.  doi: 10.1021/jm300505h

    21. [21]

      Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114, 2587.  doi: 10.1021/cr400441m

    22. [22]

      Paul, S.; Shrestha, R.; Edison, T. N. J. I.; Lee, Y. R.; Kim, S. H. Adv. Synth. Catal. 2016, 358, 3050.  doi: 10.1002/adsc.201600429

    23. [23]

      Wang, Z.; Xue, L.; He, Y.; Weng, L.; Fang, L. J. Org. Chem. 2014, 79, 9628.  doi: 10.1021/jo501753p

    24. [24]

      Gao, W. C.; Liu, T.; Cheng, Y. F.; Chang, H. H.; Li, X.; Zhou, R.; Wei, W. L.; Qiao, Y. J. Org. Chem. 2017, 82, 13459.  doi: 10.1021/acs.joc.7b02498

    25. [25]

      Gao, W. C.; Cheng, Y. F.; Chang, H. H.; Li, X.; Wei, W. L.; Yang, P. J. Org. Chem. 2019, 84, 4312.  doi: 10.1021/acs.joc.9b00256

    26. [26]

      Yu, X. Z.; Shang, Y. Z.; Cheng, Y. F.; Tian, J.; Niu, Y.; Gao, W. C. Org. Biomol. Chem. 2020, 18, 1806.  doi: 10.1039/D0OB00050G

    27. [27]

      Zhang, L.; Li, X. J.; Wang, Z. W.; Zhao, J. W.; Wang, J. J.; Han, J. W.; Zhu, S. Z. Tetrahedron 2013, 69, 7975.  doi: 10.1016/j.tet.2013.07.004

    28. [28]

      Wang, X. N.; Krenske, E. H.; Johnston, R. C.; Houk, K. N.; Hsung, R. P. J. Am. Chem. Soc. 2015, 137, 5596.  doi: 10.1021/jacs.5b02561

    29. [29]

      Zhu, Y. Y.; Zhang, M. L.; Li, T.; Song, X. X. ChemistrySelect 2019, 4, 10838.  doi: 10.1002/slct.201903330

    30. [30]

      Cao, D. P.; Zhang, K. P.; An, R.; Xu, H.; Hao, S.; Yang, X. G.; Hou, Z.; Guo, C. Org. Lett. 2019, 21, 8948.  doi: 10.1021/acs.orglett.9b03260

    31. [31]

      Tskhovrebov, A. G.; Naested, L. C. E.; Solari, E.; Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2015, 54, 1289.  doi: 10.1002/anie.201410067

    32. [32]

      Zhu, Z. Q.; Bao, P.; Wang, T. T.; Huang, Z. Z. Chin. J. Chem. 2014, 32, 1176.  doi: 10.1002/cjoc.201400516

    33. [33]

      (a) Zhou, J. H.; Jiang, B.; Meng, F. F.; Xu, Y. H.; Loh, T. P. Org. Lett. 2015, 17, 4432.
      (b) Yepes, D.; Pérez, P.; Jaquea, P.; Fernández, I. Org. Chem. Front. 2017, 4, 1390.

    34. [34]

      Masson, G; Lalli, C.; Benohoud, M.; Dagousset, G. Chem. Soc. Rev. 2013, 42, 902.  doi: 10.1039/C2CS35370A

    35. [35]

      Jian, W. J.; Qian, B.; Bao, H. L.; Li, D. L. Tetrahedron 2017, 73, 4039.  doi: 10.1016/j.tet.2016.10.049

    36. [36]

      Yang, G.; Shen, Y.; Li, K.; Sun, Y.; Hua, Y. J. Org. Chem. 2011, 76, 229.  doi: 10.1021/jo1020773

    37. [37]

      Yang, G.; Sun, Y.; Shen, Y.; Chai, Z.; Zhou, S.; Chu, J.; Chai, J. J. Org. Chem. 2013, 78, 5393.  doi: 10.1021/jo400554a

    38. [38]

      Shen, Y.; Chai, J.; Yang, G.; Chen, W.; Chai, Z. J. Org. Chem. 2018, 83, 12549.  doi: 10.1021/acs.joc.8b01798

    39. [39]

      Yang, G.; Wang, T.; Chai, J.; Chai, Z. Eur. J. Org. Chem. 2015, 2015, 1040.  doi: 10.1002/ejoc.201403325

    40. [40]

      Augustin, A. U.; Sensse, M.; Jones, P. G.; Werz, D. B. Angew. Chem., Int. Ed. 2017, 56, 14293.  doi: 10.1002/anie.201708346

    41. [41]

      Ge, J. J.; Yao, C. Z.; Wang, M. M.; Zheng, H. X.; Kang, Y. B.; Li, Y. D. Org. Lett. 2016, 18, 228.  doi: 10.1021/acs.orglett.5b03367

    42. [42]

      Wang, Z.; Yuan, Z. H.; Han, X. Y.; Weng, Z. Q. Adv. Synth. Catal. 2018, 360, 2078.

    43. [43]

      (a) Beck, B.; Magnin-Lachaux, M. Herdtweck, E.; Dömling, A. Org. Lett. 2001, 3, 2875.
      (b) Kaim, L. E.; Gizolme, M.; Grimaud, L. Org. Lett. 2006, 8, 5021.

    44. [44]

      Lyu, L. Y.; Xie, H.; Mu, H. X.; He, Q. J.; Bian, Z. X.; Wang, J. Org. Chem. Front. 2015, 2, 815.  doi: 10.1039/C5QO00106D

    45. [45]

      Hu, Q. Q.; Liu, Y.; Deng, X. C.; Li, Y. J.; Chen, Y. F. Adv. Synth. Catal. 2016, 358, 1689.  doi: 10.1002/adsc.201600098

    46. [46]

      Dimitrov, P.; Emert, J.; Faust, R. Macromolecules 2012, 45, 3318.  doi: 10.1021/ma3003856

    47. [47]

      Chen, J.; Mao, J.-C.; He, Y.; Shi, D. Q.; Zou, B. Y.; Zhang, G. Q. Tetrahedron 2015, 71, 9496.  doi: 10.1016/j.tet.2015.10.030

    48. [48]

      Zhai, J. J.; Yao, Z. G.; Xu, F. Chin. J. Org. Chem. 2014, 34, 1639 (in Chinese).
       

    49. [49]

      Liu, G. Q.; Cui, B.; Xu, R.; Li, Y. M. J. Org. Chem. 2016, 81, 5144.  doi: 10.1021/acs.joc.6b00725

    50. [50]

      Kumar, K. S.; Meesa, S. R.; Rajeshama, B.; Bhaskera, B.; Ashfaq, M. A.; Khan, A. A.; Rao, S. S.; Pal, M. Bioorg. Med. Chem. 2012, 20, 1711.  doi: 10.1016/j.bmc.2012.01.012

    51. [51]

      Nakhi, A.; Archana, S.; Seerapu, G. P. K.; Chennubhotla, K. S.; Kumar, K. L.; Kulkarni, P.; Haldar, D.; Pal, M. Chem. Commun. 2013, 49, 6268.  doi: 10.1039/c3cc42840k

    52. [52]

      Shiro, D.; Fujiwara, S.; Tsuda, S.; Iwasaki, T.; Kuniyasu, H.; Kambe, N. Tetrahedron Lett. 2015, 56, 1531.  doi: 10.1016/j.tetlet.2015.01.096

    53. [53]

      Hachiya, I.; Nakamura, K.; Hara, M.; Sato, K.; Shimizu, M. J. Org. Chem. 2019, 84, 14770.  doi: 10.1021/acs.joc.9b02364

    54. [54]

      Tadeusz. S.; Jagodziski, T. S. Chem. Rev. 2003, 103, 197.  doi: 10.1021/cr0200015

    55. [55]

      Alla, S. K.; Sadhu, P.; Punniyamurthy, T. J. Org. Chem. 2014, 79, 7502.  doi: 10.1021/jo501216h

    56. [56]

      Kumar, K.; Konar, D.; Goyal, S.; Gangar, M.; Chouhan, M.; Rawal, R. K.; Nair, V. A. ChemistrySelect 2016, 1, 3228.  doi: 10.1002/slct.201600601

    57. [57]

      Liu, X.; Zhang, S. B.; Dong, Z. B. Eur. J. Org. Chem. 2018, 39, 5406.

    58. [58]

      Yamamoto, Y. J. Org. Chem. 2007, 72, 7817.  doi: 10.1021/jo070579k

    59. [59]

      Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 6074.  doi: 10.1021/jacs.7b02553

    60. [60]

      Nikonov, G. I. ACS Catal. 2017, 7, 7257.  doi: 10.1021/acscatal.7b02460

    61. [61]

      Kato, N.; Tamura, Y.; Kashiwabara, T.; Sanji, T.; Tanaka, M. Organometallics 2010, 29, 5274.  doi: 10.1021/om100376d

  • 加载中
    1. [1]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    2. [2]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    3. [3]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    10. [10]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    11. [11]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    12. [12]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    13. [13]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    17. [17]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    18. [18]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    19. [19]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    20. [20]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

Metrics
  • PDF Downloads(187)
  • Abstract views(6691)
  • HTML views(2608)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return